Cu| COpper-rs

An open source Rust first software engine for robotics.

> Software “engine” for Robots?

WA S
iV
. @ £l ¢ fe] <]
Ay T

3001
st

= Goal: Focus on the end product, not just a demo.

> Models the set of tasks as a kind of flexible set of microservices.

asynchronous

non deterministic

foot-gt# bazooka situation of C++

terrible performance

in practice: Ubuntu is mandatory to run this.

very challenging to put in production as a company
Safety certifying a system using this?

20 20 Z0 70 2 2 2

V2

v

)/
copper-rs

deterministic by design

Designed for safety - conceptually Copper is a compiler
performant

€ High bandwidth

& Low latency

¢ Lowjitter

allows developers to focus on algorithms, not buffers
Can target both CPU & MCU

A Quick tour?

[1] SysInfo [2] DAG [3] Latencies [4] Memory Pools [5] Debug Output [q] Quit | Scroll: hjkl or N>

>

- railpos - railpos_pid - merge_pids - motor

» % ¢ | ot

cu_rp_encoder:: Encoder tasks :: PosPID tasks :: PIDMerger rp_sn754410_new:: SN754410

v v 0.00 0.01 0.00 -0.00 v Comp:-0.00 v Applied force: -0.0802857
- balpos - balpos_pid

Ld &

cu_ads7883_new:: ADS7883 tasks::BalPID Copper Simulator AN

v v 0.00 0.00 0.00 0.00

oom
ause/Resume
gset

[copperconfig.ron

idz “spre”,
type: "tasks::CaterpillarSource", - [
// Make a caterpillar by propagating messages from the source td
(srcy "spch, sty "et-0"; msg: "cu_rp_gpio::RPGpioPayload"),
TRges " (src: "ct-@", dst: "ct-1", msg: "cu_rp_gpio::RPGpioPayload"),
id: "ct-0 ! (src: "ct-1", dst: "ct-2", msg: "cu_rp_gpio::RPGpioPayload"),

type: "tasks::CaterpillarTask", (src: "ct-2", dst: "ct-3", msg: "cu_rp_gpio::RPGpioPayload"),
(src: "ct-3", dst: "ct-4", msg: "cu_rp_gpio::RPGpioPayload"),

id: "gpio-B",

type: "cu_rp_gpio::RPGpio",
config: {

| | "pin": 4,

H

#{derive(Default)]

pub struct CaterpillarSource {
state: bool,

}

impl Freezable for CaterpillarSource {
fn freeze<E: Encoder>(&self, encoder: &mut E) — Result<(), EncodeError> {
Encode :: encode(&self.state, encoder)

I

fn thaw<D: Decoder>(&mut self, decoder: &mut D) — Result<(), DecodeError> {
self.state = Decode::decode(decoder)?;

0k(0)
}

impl CuSrcTask for CaterpillarSource {
type Output<'m> = output_msg! (RPGpioPayload);

fn new(_config: Option<&ComponentConfig>) — CuResult<Self>
where
Self: Sized,
{
0k(Self { state: true })
he

fn process(&nut self, clock: &RobotClock, output: &mut Self::Qutput<'_>) — CuResult<()> {
// forward the state to the next task
self.state = !self.state;
output.set_payload(RPGpioPayload { on: self.state });
output.tov = Tov::Time(clock.now());
output.metadata.set_status(self.state);
0k(Q)

start a project
cargo cunew [destination folder]

build
cargo build

unit test
cargo test

cross compile to arm
cross build --target aarch64-unknown-linux-gnu
= 1 static executable to deploy

An incredible open source ecosystem already!

faer

nalgebra

Kornia

Bevy + Avian
Iceoryx2

Zenoh

Rerun

Foxglove

... and much more

% A @ Check us out on Github, and star the repo!

100x less latent at runtime than ROS2

tasks:CaterpillarSource

L
I o

(o a

|

tasks:CaterpillarTask

cu_rp_gplos:RPGpioMsg

tasks:CaterpillarTask

cu_rp_gplos:RPGpioMsg en_rp_gplos:

gpio-t

cu_rp. gpio:RPGpio G
tasks:CaterpillarTask

e)

o RPGpioMsg
(‘gpio2 \
cu.rp.gpio:RPGpio Eﬂ-i

RPGploMsg

lo::RPGpioMsg

.

tasks:CaterpillarTask

pn=27

gpio3. h

cu_rp_gpio:RPGpio

pin=22
C

gpio4
cu_rp_gpio:RPGpio

)
P
w

tasks:CaterpillarTask

u_rp_gpios:RPGpioMsg cu_rp_gpios:RPGpioMsg

(cts D

tasks:CaterpillarTask
\ 4

spio::RPGpioMsg cu_rp_gpio:: RPGploMsg
P
gpios.

cu_rp_gpio:RPGpio &0
tasks:CaterpilarTask
e .
o

i 0::RPGpioMsg cu_rp_gplosRPGpioMsg

gpi p
cU_rp_gpio:RPGpio. &2

tasks:CaterpillarTask
pin=19 \

eu_rp_gpio::RPGpioMsg
gpio7.)
cu_rp_gpio:RPGpI0

Pin=25

ROS2 [Iron / C++] vs Copper [pre-alpha / Rust] -- Latency

Latency in nanoseconds

10,000,000

1,000,000

270,080

100,000

420,096

== ROS Warm latency (ns)

499,968

Copper Warm latency (ns)

809,984

1,019,904

Task hops

Linear data logging

31000x faster than ROS2 (sglite backend)

But MCAP? Copper is still 12x faster ROS2
logging with MCAP

Structured logging

I0x reduction size vs text logging

makes debug log a typed time
series like everything else

debug!("This string won't be stored nor interpreted on the robot", myvaluename = 42);

A Quick demo?

Conceptual view

Implementation with
instant Copper

feedback

Copper infers an
execution plan.

fn process(
&mut self,
clock: &RobotClock,
_empty_msg: &mut

CuMsg<Self: :Output>,

) -> CuResult<()> {
ok(())

}

Deploy and test.

Collect data

Automated
execution strategy
tuning

010101010101011001
100101010100110010
110011010110101010
101010000111000111
100101110000101010
100111000010100110

Rust for Robotics

But what about existing R0S users?

-> Provide a progressive path to migrate their systems

@ Legacy ROS System

* Leveraging existing bridges like rosrust

https://github.com/adnanademovic/rosrust

Some robotics companies using Rust:

Scythe
Bedrock robotics
Komboi
farm-ng / bonsai

Konboi One

2025 Commercial Launch of our Secret WWeapon
Hypermile, our Al eco-driving Co-Pilot

Konboi Al

Hypermile, our aftermarket kit, reduces fuel
consumption while efficiently harvesting huge
amounts of data to train our Al Pilot:

1% fuel savings with superhuman efficiency driving

- 22t less CO2 per truck per year

Superhuman Al Pilot

- +50% net margin for our clients

* huge market demand % 7k€ ARR per truck

2 2024 ® 2025 # 2026

Prototype Completion First revenues Scale

