() namecoin

Namecoin and Tor as a Public Key Infrastructure

Jeremy Rand
Lead Application Engineer, The Namecoin Project
https://www.namecoin.org/

PGP: 1D04 FBOD 50BF 2A8E 9F3E 58AD DC/E 7/F8A E30E 73E6

Presented at FOSDEM 2026
Decentralized Internet and Privacy Devroom

What is TLS?

* Transport Layer Security.
— Encryption and authentication for TCP services.
— It's the “S” In “HTTPS".

* Based on the 1990’s era Netscape protocol SSL.
— Occasionally people still incorrectly call it SSL.

* Uses certificate authorities (CA’s) to establish trust.

Public CA’s are a Censorship Risk

* Centralized, trusted 3" parties.

e Sci-Hub has had their certs revoked (copyright
awsuit).

* Let’s Encrypt says they revoke (censor) about
one website certificate per month due to U.S.
sanctions compliance reasons.

Public CA’s are a Wiretapping Risk

* DigiNotar CA compromised in 2011, Iranian users
wiretapped.

* Moxie Marlinspike 2013 leak:

— Saudi government intended to legally compel a public CA (Saudi
or UAEg) to wiretap users.

* Saudi intelligence paid Twitter mole to wiretap me in 2014.

- Licl?ely because my TLS research threatened their CA-related
efforts.

— Trump DoJ declined to prosecute Wiretap Act violation.

Inspiration from DNSSEC

In the DNS world, there are TLSA records.

You look up a TLSA record for a domain name...
~— You get back a public key.

This public key can be used as a domain-specific
CA to authenticate TLS certs for that domain.

Effectively trades trusting public CA’s for trusting
DNS registrars + registries + ICANN.

Self-Authenticating Domain Names?

 Domain names inherently tied to cryptographic
material.

— Authenticating doesn’t involve a third party.

Self-Authenticating Domain Names?
Tor Onion Services

* Anonymously hosted.
* Rather slow.

e 2gzyxab5ihm7nsggfxnu52rck2vv4rvmd Lk
u3zzuibdudxyclen53wid.onion

* Ed25519 pubkey embeddec
name.

INnside domain

Self-Authenticating Domain Names?

Namecoin
* Like the DNS but on a blockchain.

* Doesn’t require Tor.
* Lookups are about as fast as DNS.
* federalistpapers.bit

* Owned by a Namecoin address (same format
as a Bitcoin address).

Self-Authenticating Domain Names?

Implications

* We could do something similar to TLSA
records.

* Avoids public CA's.

* Also avoids trusting DNS.
 Seems like a win.

Wait, but why

onion services with TLS?
* Onions are already encrypted....

* But TLS has better end-to-end security.

— Onion service encryption is terminated at the Tor
daemon.

- TLS Is terminated at the application.

Why does the endpoint matter?

* Tor daemon and application may be in different
trust domains.

— Whonix — Tor Browser runs in one VM; Tor daemon runs
In another VM.

— Web server could also be on Whonix, not just the client.

— Client and server won't know whether each other has
such a threat model.

Why does the endpoint matter? (2)

* Tor daemon and application may have an insecure
network connection to each other.

~— Running Tor daemon and an HTTPS server on different
cloud infrastructure IP’s.

— Using Tor Browser on a laptop with a Tor daemon on a
WIFi router.

— Again, client and server won’t know whether each other
has such a threat model.

TLS Helps Compatibility

* Many applications expect TLS to be there.

* Web browsers show scary warnings without TLS.
— And they restrict features too (e.g. webcam access).

* Giving them TLS Is easier than patching them.

— Tor Browser’s relevant patches are a maintenance
nightmare.

How do we get TLS

Implementations to do this?

* Virtually no TLS implementations support TLSA
records.

* |If we had a pluggable certificate trust API, we
could do something?

* There iIs no WebExtensions API for pluggable
certificate trust.

But there’s another kind

of browser add-on
e PKCS#11 modules.

 Well-known: it's how smartcards and HSM'’s are
added to browsers.

e | ess well-known: browsers like Firefox use
PKCS#11 as a database query APl for TLS
certificates.

Example PKCS#11 modules

* Mozilla’s built-in root CA list.

- libnssckbi.so —it's where Let’s Encrypt, Comodo, etc.
are.

- This is a PKCS#11 module!

* SQLite-based trust database in Firefox.

- “Softoken” — it's where CA's are stored that you added in the
Firefox UI.

- This Is also a PKCS#11 module!

How do PKCS#11 queries work?

* Firefox sends PKCS#11 module the Issuer
Name of a certificate signed by an unknown
CA.

« PKCS#11 module responds with the full
certificate of that CA.

What's an Issuer Name?

* Alssuer Name looks like this (in Firefox GUI):
Issuer Name

Country UsS
Organization Google Trust Services LLC
Common Name GTS Root R4

What i1sn’t In an Issuer Name?

* Public key or signature.

- These are elsewhere: our PKCS#11 module can
make them up!

e Domain name that it’s valid for.

- |Instead found in the Name Constraints field: our
PKCS#11 module can make this up too.

But how does our module know

what to make up?

* What if we put a hint in the Issuer Name of our TLS
certificate?

— Stuff a domain name into the Common Name subfield.
— Stuff a public key into the Serial Number subfield.

— Sign the public key with an onion key or a Namecoin
address.

* Stuff that signature into the Serial Number subfield too.

N

Signatures - Sign / Verify a Message WA

Sign Message | Verify Message |

You can sign messages/agreements with your legacy (P2PKH) addresses to prove you can receive coins sent to them.

Be careful not to sign anything vague or random, as phishing attacks may try to trick you into signing your identity
over to them. Only sign fully-detailed statements you agree to.

Mz5jZ1faNtDT rXRwMet6AmAuZH7 gQvelHg 8|8

Mamecoin X.509 Stapled Certification:
{"address":"MzSjZ)faNtDTrXRwMetbAm4u2H7gQveWHg","domain"™:"www.federalistpapers.bit","notafter™:" 1769729

849" "x509pub™:"MFkwEWYHK0ZIZj0CAQYIK0Z1zj0DAQCDQQAEQgiZc_Sutlr9yElx2pk3Da-
WX0TSh5C4xg_PorhDS1s1yKwnUtBYC7OQakuW21v6 TOKYDVZSIeATyvYMWIRQ3w"}

Signature
-ONv]xcB5B3gkUILGMXnTmx814nKD2 LAUErOWSbKt41dzUTdVnGK] talIsPF3n7sbhirOpnwWykrridgZXpt2E8=| (3

£ Sign Message | | () Clear All | Message signed.

Issuer Name

Common Name www.federalistpapers.bit Domain AIA Parent CA

Namecoin TLS Certificate Stapled:
{"pubb64":"MFkwEwWYHKo0ZIzj0CAQYIK0ZIzjODAQcDQQAEQQiZc_8utlr9yElx
2pk30g-
WX0T9h5C4xg_PorhDS1s1yKwnUtBVC70QakuW21v6TOKYDvZSIeATyvYM
WJRQ3w","sigs":"[{\"blockchainaddress\":
\"MzSjZJfaNtDTrXRwMet6Am4u2H7gQveWHQg\" \"blockchainsig\":
\"H+ONvjxc0SB3gkU9LGMXNTmx8l4nKD2IAuErOW8bKt4idzUfdVnGKjtaLIsP
F3n7sbhirOpnWykrr7dgZXpt2E8=\"}]\n"}

Serial Number

Validation Workflow

* PKCS#11 module checks the pubkey+signature in the
Issuer Serial Number against the domain name in the
Issuer Common Name.

~ Confirms that the pubkey was signed by the owner of the
domain name.

* Returns a newly generated CA with the given public key.
~— Name constraint for the given domain name.
~— Cross-signed by a locally trusted root CA.

* TLS client is happy!

Deployment (Server-Side)

* ncgencert -host
Xx4hd6 1x55ns6f24yejx3u212p6khgni2xypxp
cxavbpzwpt2pix6dcqd.onion
-grandparent-tor-key
/var/lib/tor/hidden_service/hs_ed2551
O secret_key

— Put the resulting chain.pem and key. pem into Caddy.

Deployment (Client-Side)

* Installing a PKCS#11 module in Firefox is easy.
— Just go to “Security Devices” settings....

— Click “Load” and choose the path of the PKCS#11
module....

* It'sa .so, .dylibor .dll file depending on OS.

~— You're done. TLS with onion services and
Namecoin will work now.

It works in Tor Browser!

oty O & =

Ed25519 Onion
PKCS#11 Test Site

If you can read this, then you've configured .onion
PKCS#11 trust correctly!

Check the cert chain to see how the magic works!

Compatibility?

* Any application using NSS or GnuTLS knows
how to use PKCS#11 for this.

e That covers Firefox and Tor Browser.
e What about Chromium?

Chromium and AlA

 Chromium looks up unknown CA'’s via the AlA
fleld rather than the Issuer Name field.

* It's just a URL where Chromium downloads the
missing CA’s certificate.

Authority Info (AIA)

Location http://i.pki.goog/r4.crt
Method CA Issuers

We can do AlA the same way

e We can run a localhost HTTP daemon that
responds to AlA lookups.

Authority Info (AIA)
http://aia.x--nmc.bit/aia?
domain=www.federalistpapers.bit&pubb64=MFkwEWYHKo0ZI1zj0CAQYIKoZI
zj0ODAQcDQQAEQqiZc_8utlr9yElx2pk30g-
Location WX0T9h5C4xg_PorhDS1s1yKwnUtBVC70QakuW21v6TOKYDvZSIeATyvYM

WJRQ3w&sigs=%5B%7B%22blockchainaddress%22%3A%22MzSjZ)faNtDTr
XRwMet6Am4u2H7gQveWHg%22%2C%22blockchainsig%22%3A%22H%2
BONvjxc0SB3gkU9LGMXNTmx8l4nKD2IAUuErOW8bKt4idzUfdVnGKjtaLIsPF3
n7sbhirOpnWykrr7dgZXpt2E8%3D%22%7D%5D%0A

Method CA Issuers

Compatibllity!

* Virtually all TLS implementations support either
PKCS#11 or AlA.

- OpenSSL uses a different API.

- We don’t support OpenSSL’s API yet, but it’s
analogous to PKCS#11 and should not be
problematic to support.

Sighature Scheme Support

* Tor uses Ed255109.

* Namecoin uses Bitcoin Script (secp256k1 with
multisig, timelocks, etc).

* TLS implementations only support ECDSA with
NIST curves.

— Totally fine — the signature Is validated by the
PKCS#11 module.

Namecoin Edge Cases

* Multiple Namecoin addresses can control a
Namecoin domain name simultaneously.

- They can also control different subdomains.

e So the Issuer Name / AIA URL has to encode
which Namecoin address and subdomain was
Involved.

Scalability Benefits

* Signing a TLS public key doesn’t require any
broadcasting.
— Improves scalability.
— TLS handshake bytes are cheap.

— Namecoin blockchain storage and onion service DHT
storage are much more expensive.

— This will be magnified once PQ signatures like Dilithium
become commonplace.

SSH

e SSH can use SSHFP records from DNS.

- But that means broadcasting the SSHFP records.
 Not as scalable as what we do for TLS.

- Can we keep it inside the SSH handshake like we
did for TLS?

Fun with SSH Host Keys

* SSH has certificates and CA'’s.
— Not used very often, but they’re a thing.
— Generally used in enterprise environments.

e SSH certificates can have “extensions”.
— Similar role as the Issuer Name and AlA.
- We can embed a signhature here.

Validating SSH Host Keys

* OpenSSH has the “KnownHostsCommand” option.

— It runs a custom command, and passes the SSH
certificate it received to that command.

— The command can choose to mark it as trusted.

* So we made such a command.

— Shares most of the code in common with our PKCS#11
module and AIA daemon.

Validating SSH Host Keys

o ~: bash — Konsole v oA X

[NewTab []7] split view ~ B paste Q Find.. =

user@Travel25:~$% ssh test10.bit

20250904104924 [DEBUG] encaya.verifystapled: stapled notafter field missing: test10.bit
20250904104924 [DEBUG] encasha.main: signature check passed for testl0.bit+
user@test10.bit's password: []

Revoking TLS Certificates

* PKCS#11 supports querying for revocation status too.

— Query is keyed by Issuer Name and Certificate Serial
Number.

— You can put Issuer/Serial pairs in the Namecoin blockchain
or the onion descriptor.

* For Chromium, we haven't tried yet.
— Might be able to use OCSP like we use AIA?

Revoking SSH Host Keys

* OpenSSH gives us both the CA pubkey and the
host pubkey.

- Easy to check both against the revocation list in the
Namecoin blockchain or onion descriptor.

First-Party Isolation

* Tor Browser enforces FPI (“First-Party Isolation”):

— A Dbrowser tab for “forum.example.bit” and a tab for
“wiki.example.bit” can share a Tor circuit...

But tabs for “forum.example.bit” and “wiki.example2.bit” must use
mutually segregated Tor circuits.

— Subresources (images, CSS, etc) stay in the circuit of their parent
webpage.

Same rules apply to browser state in those tabs (e.g. cookies).
* This prevents tracking you across sites.

First-Party Isolation with

PKCS#11 and AIA

PKCS#11 and AlA have no mechanism to
determine the first-party domain associated with

a certificate lookup request.

— Which prevents us from isolating Namecoin or
onion descriptor lookups on different Tor circuits.

So how do we support anonymity?

First-Party Isolation (Solution)

* Before the TLS/SSH handshake, Tor’s control port API
notifies that a connection to that hostname Is about to

happen.
~ FPIl is available there (thanks Tor devs for merging our patches!).

* We can do the Namecoin or onion descriptor lookup at that
time, and cache:

- The domain.
— (For Namecoin) The list of Namecoin addresses who control the
domain.

— Any revocations in the blockchain or onion descriptor.

First-Party Isolation (Solution) (2)

« PKCS#11 module / AlA server / SSH command
can just query that cache.

- No network traffic.
- Essentially zero latency overhead.

e The cache isn’t isolated, but there’s no state In
it that can be observed by a website.

Thanks to funders

NLnet Foundation’s Internet Hardening Fund /
Netherlands Ministry of Economic Affairs and
Climate Policy

NLnet Foundation’s Next Generation Internet Zero
Core Fund / European Commission

Power Up Privacy
Cyphrs

Contact me at...

* https://www.namecoin.org/

OpenPGP (after FOSDEM):
1D04 FB9D 50BF 2A8E 9F3E 58AD DC7E 7F8A E30E 73E6

jeremyrand@danwinl1210.de (after FOSDEM)
byronlelah@airmail.cc (travel during FOSDEM — no PGP)

Or just find me in person at FOSDEM. (I'm wearing a Namecoin
shirt.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

