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What is TLS?
● Transport Layer Security.

– Encryption and authentication for TCP services.
– It’s the “S” in “HTTPS”.

● Based on the 1990’s era Netscape protocol SSL.
– Occasionally people still incorrectly call it SSL.

● Uses certificate authorities (CA’s) to establish trust.



  

Public CA’s are a Censorship Risk
● Centralized, trusted 3rd parties.
● Sci-Hub has had their certs revoked (copyright 

lawsuit).
● Let’s Encrypt says they revoke (censor) about 

one website certificate per month due to U.S. 
sanctions compliance reasons.



  

Public CA’s are a Wiretapping Risk
● DigiNotar CA compromised in 2011, Iranian users 

wiretapped.
● Moxie Marlinspike 2013 leak:

– Saudi government intended to legally compel a public CA (Saudi 
or UAE) to wiretap users.

● Saudi intelligence paid Twitter mole to wiretap me in 2014.
– Likely because my TLS research threatened their CA-related 

efforts.
– Trump DoJ declined to prosecute Wiretap Act violation.



  

Inspiration from DNSSEC
● In the DNS world, there are TLSA records.
● You look up a TLSA record for a domain name…

– You get back a public key.
● This public key can be used as a domain-specific 

CA to authenticate TLS certs for that domain.
● Effectively trades trusting public CA’s for trusting 

DNS registrars + registries + ICANN.



  

Self-Authenticating Domain Names?
● Domain names inherently tied to cryptographic 

material.
– Authenticating doesn’t involve a third party.



  

Self-Authenticating Domain Names?
Tor Onion Services

● Anonymously hosted.
● Rather slow.
● 2gzyxa5ihm7nsggfxnu52rck2vv4rvmdlki
u3zzui5du4xyclen53wid.onion

● Ed25519 pubkey embedded inside domain 
name.



  

Self-Authenticating Domain Names?
Namecoin

● Like the DNS but on a blockchain.
● Doesn’t require Tor.
● Lookups are about as fast as DNS.
● federalistpapers.bit
● Owned by a Namecoin address (same format 

as a Bitcoin address).



  

Self-Authenticating Domain Names?
Implications

● We could do something similar to TLSA 
records.

● Avoids public CA’s.
● Also avoids trusting DNS.
● Seems like a win.



  

Wait, but why 
onion services with TLS?

● Onions are already encrypted…. 
● But TLS has better end-to-end security.

– Onion service encryption is terminated at the Tor 
daemon.

– TLS is terminated at the application.



  

Why does the endpoint matter?
● Tor daemon and application may be in different 

trust domains.
– Whonix – Tor Browser runs in one VM; Tor daemon runs 

in another VM.
– Web server could also be on Whonix, not just the client.
– Client and server won’t know whether each other has 

such a threat model.



  

Why does the endpoint matter? (2)
● Tor daemon and application may have an insecure 

network connection to each other.
– Running Tor daemon and an HTTPS server on different 

cloud infrastructure IP’s.
– Using Tor Browser on a laptop with a Tor daemon on a 

WiFi router.
– Again, client and server won’t know whether each other 

has such a threat model.



  

TLS Helps Compatibility
● Many applications expect TLS to be there.
● Web browsers show scary warnings without TLS.

– And they restrict features too (e.g. webcam access).
● Giving them TLS is easier than patching them.

– Tor Browser’s relevant patches are a maintenance 
nightmare.



  

How do we get TLS 
implementations to do this?

● Virtually no TLS implementations support TLSA 
records.

● If we had a pluggable certificate trust API, we 
could do something?

● There is no WebExtensions API for pluggable 
certificate trust.



  

But there’s another kind 
of browser add-on

● PKCS#11 modules.
● Well-known: it’s how smartcards and HSM’s are 

added to browsers.
● Less well-known: browsers like Firefox use 

PKCS#11 as a database query API for TLS 
certificates.



  

Example PKCS#11 modules
● Mozilla’s built-in root CA list.

– libnssckbi.so – it’s where Let’s Encrypt, Comodo, etc. 
are.

– This is a PKCS#11 module!
● SQLite-based trust database in Firefox.

– “Softoken” – it’s where CA’s are stored that you added in the 
Firefox UI.

– This is also a PKCS#11 module!



  

How do PKCS#11 queries work?
● Firefox sends PKCS#11 module the Issuer 

Name of a certificate signed by an unknown 
CA.

● PKCS#11 module responds with the full 
certificate of that CA.



  

What’s an Issuer Name?
● A Issuer Name looks like this (in Firefox GUI):



  

What isn’t in an Issuer Name?
● Public key or signature.

– These are elsewhere: our PKCS#11 module can 
make them up!

● Domain name that it’s valid for.
– Instead found in the Name Constraints field: our 

PKCS#11 module can make this up too.



  

But how does our module know 
what to make up?

● What if we put a hint in the Issuer Name of our TLS 
certificate?
– Stuff a domain name into the Common Name subfield.
– Stuff a public key into the Serial Number subfield.
– Sign the public key with an onion key or a Namecoin 

address.
● Stuff that signature into the Serial Number subfield too.



  



  



  

Validation Workflow
● PKCS#11 module checks the pubkey+signature in the 

Issuer Serial Number against the domain name in the 
Issuer Common Name.
– Confirms that the pubkey was signed by the owner of the 

domain name.
● Returns a newly generated CA with the given public key.

– Name constraint for the given domain name.
– Cross-signed by a locally trusted root CA.

● TLS client is happy!



  

Deployment (Server-Side)
● ncgencert -host 
x4hd6lx55ns6f24yejx3u2i2p6khqni2xypxp
cxavbpzwpt2pix6dcqd.onion  
-grandparent-tor-key 
/var/lib/tor/hidden_service/hs_ed2551
9_secret_key
– Put the resulting chain.pem and key.pem into Caddy.



  

Deployment (Client-Side)
● Installing a PKCS#11 module in Firefox is easy.

– Just go to “Security Devices” settings….
– Click “Load” and choose the path of the PKCS#11 

module….
●  It’s a .so, .dylib or .dll file depending on OS.

– You’re done. TLS with onion services and 
Namecoin will work now.



  

It works in Tor Browser!



  

Compatibility?
● Any application using NSS or GnuTLS knows 

how to use PKCS#11 for this.
● That covers Firefox and Tor Browser.
● What about Chromium?



  

Chromium and AIA
● Chromium looks up unknown CA’s via the AIA 

field rather than the Issuer Name field.
● It’s just a URL where Chromium downloads the 

missing CA’s certificate.



  

We can do AIA the same way
● We can run a localhost HTTP daemon that 

responds to AIA lookups.



  

Compatibility!
● Virtually all TLS implementations support either 

PKCS#11 or AIA.
– OpenSSL uses a different API.
– We don’t support OpenSSL’s API yet, but it’s 

analogous to PKCS#11 and should not be 
problematic to support.



  

Signature Scheme Support
● Tor uses Ed25519.
● Namecoin uses Bitcoin Script (secp256k1 with 

multisig, timelocks, etc).
● TLS implementations only support ECDSA with 

NIST curves.
– Totally fine – the signature is validated by the 

PKCS#11 module.



  

Namecoin Edge Cases
● Multiple Namecoin addresses can control a 

Namecoin domain name simultaneously.
– They can also control different subdomains.

● So the Issuer Name / AIA URL has to encode 
which Namecoin address and subdomain was 
involved.



  

Scalability Benefits
● Signing a TLS public key doesn’t require any 

broadcasting.
– Improves scalability.
– TLS handshake bytes are cheap.
– Namecoin blockchain storage and onion service DHT 

storage are much more expensive.
– This will be magnified once PQ signatures like Dilithium 

become commonplace.



  

SSH
● SSH can use SSHFP records from DNS.

– But that means broadcasting the SSHFP records.
● Not as scalable as what we do for TLS.

– Can we keep it inside the SSH handshake like we 
did for TLS?



  

Fun with SSH Host Keys
● SSH has certificates and CA’s.

– Not used very often, but they’re a thing.
– Generally used in enterprise environments.

● SSH certificates can have “extensions”.
– Similar role as the Issuer Name and AIA.
– We can embed a signature here.



  

Validating SSH Host Keys
● OpenSSH has the “KnownHostsCommand” option.

– It runs a custom command, and passes the SSH 
certificate it received to that command.

– The command can choose to mark it as trusted.
● So we made such a command.

– Shares most of the code in common with our PKCS#11 
module and AIA daemon.



  

Validating SSH Host Keys



  

Revoking TLS Certificates
● PKCS#11 supports querying for revocation status too.

– Query is keyed by Issuer Name and Certificate Serial 
Number.

– You can put Issuer/Serial pairs in the Namecoin blockchain 
or the onion descriptor.

● For Chromium, we haven’t tried yet.
– Might be able to use OCSP like we use AIA?



  

Revoking SSH Host Keys
● OpenSSH gives us both the CA pubkey and the 

host pubkey.
– Easy to check both against the revocation list in the 

Namecoin blockchain or onion descriptor.



  

First-Party Isolation
● Tor Browser enforces FPI (“First-Party Isolation”):

– A browser tab for “forum.example.bit” and a tab for 
“wiki.example.bit” can share a Tor circuit…

– But tabs for “forum.example.bit” and “wiki.example2.bit” must use 
mutually segregated Tor circuits.

– Subresources (images, CSS, etc) stay in the circuit of their parent 
webpage.

– Same rules apply to browser state in those tabs (e.g. cookies).
● This prevents tracking you across sites.



  

First-Party Isolation with
PKCS#11 and AIA

● PKCS#11 and AIA have no mechanism to 
determine the first-party domain associated with 
a certificate lookup request.
– Which prevents us from isolating Namecoin or 

onion descriptor lookups on different Tor circuits.

● So how do we support anonymity?



  

First-Party Isolation (Solution)
● Before the TLS/SSH handshake, Tor’s control port API 

notifies that a connection to that hostname is about to 
happen.
– FPI is available there (thanks Tor devs for merging our patches!).

● We can do the Namecoin or onion descriptor lookup at that 
time, and cache:
– The domain.
– (For Namecoin) The list of Namecoin addresses who control the 

domain.
– Any revocations in the blockchain or onion descriptor.



  

First-Party Isolation (Solution) (2)
● PKCS#11 module / AIA server / SSH command 

can just query that cache.
– No network traffic.
– Essentially zero latency overhead.

● The cache isn’t isolated, but there’s no state in 
it that can be observed by a website.



  

Thanks to funders
● NLnet Foundation’s Internet Hardening Fund / 

Netherlands Ministry of Economic Affairs and 
Climate Policy

● NLnet Foundation’s Next Generation Internet Zero 
Core Fund / European Commission

● Power Up Privacy
● Cyphrs



  

Contact me at...
● https://www.namecoin.org/ 
● OpenPGP (after FOSDEM): 

1D04 FB9D 50BF 2A8E 9F3E 58AD DC7E 7F8A E30E 73E6

● jeremyrand@danwin1210.de (after FOSDEM)

● byronlelah@airmail.cc (travel during FOSDEM – no PGP)

● Or just find me in person at FOSDEM. (I’m wearing a Namecoin 
shirt.)
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