SSH logins in practice:
certificates vs OPKSSH

Erich Birngruber

FOSDEM’26 2026-02-01



Looking into SSH logins - why?

* Environment: Resarch Campus / University

* Goal: give hundrets of users access to a compute cluster
l.e. Linux hosts

* Challenge: hosts are accessed via SSH, but many or most clients
are unmanaged — unknown endpoint security

One answer to that is short lived credentials.
This can be implemented with certificates or tokens.

How are you using SSH?



The lab setup “ssh_lab”

* Container environment to with various parts of infrastructure

- =)

Certificate Authority Oauth ID provider /IDM DNS

authenticate
\ |

client SSH server

]
|

C@
q]
5C




Demo time...



Conclusion

Certificates OpenPubKey SSH
+short lived + oauth flow +short lived + oauth flow
+ host validation + highly customizable policies
+core SSH features control (also with claims)
(forwarding, agent, etc.) + use with multiple (existing) ID
providers

- does not cover host

- CA setup required .
verification

(get over it, you need a 3rd party tool additional to SSH client)



Thank you!

Time for questions



Resources

* SSH server: https://www.openssh.org

* IDM and OAuth provider: https://kanidm.github.io/kanidm/stable/
* Certificate Authority: https://smallstep.com/docs/step-ca/

* OpenPubkeySSH: https://github.com/openpubkey/opkssh

* DNS server: https://dnsmasqg.org

* Container and orchestration: https://podman.io/

* The ssh_lab: https://github.com/CLIP-HPC/ssh_lab



https://www.openssh.org/
https://kanidm.github.io/kanidm/stable/
https://smallstep.com/docs/step-ca/
https://github.com/openpubkey/opkssh
https://dnsmasq.org/
https://podman.io/
https://github.com/CLIP-HPC/ssh_lab

Slides of last resort



Demo 1: password



(® O ssh_lab — podman « demo1_passwd.sh — 94x35

dman « demo1_passwd.sh -zsh -zsh « podman-compose up S

erich.birngruber@nbm-gmi-89 ssh_lab % ./demol_passwd.sh (main)ssh_1lab

preparing, cleaning up...

# Demo: SSH login with classic password
#

# connect to server

# password: '"demo"

ssh -1 pwuser server.example.com

# observe: key confirmation
# .ssh/config is empty, no presets
# on second connect: no question for host key (it's knqyn)

cat .ssh/known_hosts

# password: "demo"
# contains public host key of server.example.com

[pwuser@client ~]$%

[pwuser@client ~]$%

[pwuser@client ~]$ ssh -1 pwuser server.example.com

The authenticity of host 'server.example.com (172.20.0.5)' can't be established.
ECDSA key fingerprint is: SHA256:jt1YUkKgCL28z1kZ1rFSOvbyHb7Pt3tGgJA9ylAo6g4

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprintl)? yes

Warning: Permanently added 'server.example.com' (ECDSA) to the list of known hosts.
pwuser@server.example.com's password:

server says,

L
|/
-~
~
-~

-zsh

10



()] @ ssh_lab — podman « demo1_passwd.sh — 94x35

dman « demo1_passwd.sh -zsh -zsh « podman-compose up  +, -zsh +

[pwuser@client ~1$%

[pwuser@client ~]$ ssh -1 pwuser server.example.com

The authenticity of host 'server.example.com (172.20.0.5)' can't be established.
ECDSA key fingerprint is: SHA256:jt1YUkKgCL28z1kZ1lrFSOvbyHb7Pt3tGgJA9y1A0604

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'server.example.com' (ECDSA) to the list of known hosts.
pwuser@server.example.com's password:

server says,

=
~
~
~
~

Congratulations, you're logged in now!

[23:28 pwuser@server ~]$

[23:28 pwuser@server ~]$

exit

Connection to server.example.com closed.
[pwuser@client ~]$ cat .ssh/known_hosts
server.example.com ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbm1lzdHAyNTYAAAAIbmlzdHAYNTYAAABBBPH
Tuhj4Eyrb1TU7KDBxGyRgtFCbsJcgxj rxM1W/sjwWml8PmsIjIVrISc6A0FGdrhoYdIKhfWWZ4KmWSuOKKMIU=
server.example.com ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABgQCYuNXrOtj8tLmXQN/EjWwBgzm6DRz8HjSL1Mv
AtxqDs2KR+BNH61Qz/t8CizBbOA/x8b2KXT1IKRiXyFSAq+QssWmJG8IASUIP48DGFGLQtTIWT1xg XZEI2k4t0OUHKIA9L
Qs502IRMw5SKaccnXwR95vdfItZdwQjDaH4X0F/fL/G2m+IRADS6FYSE9pdxd3443m0INugM+Wt30XdVNkXtv8C0IgU1aD
11j/Y80/jkufXN6nAhvhr8YASvSsuCCzvhAAHHZwahF@Zj99t9nC0AeHuwuXRejI0SopjnR1I+eWKYNMCzjoRDk7M5SHkI
R71MfnZbHNtghG/wd@nEuBx/MJ11bQj@kL3sUORWNqcCPvu3I22PJIvtcWFYTXRNKmB3h5InPtHuygHI8q+3eQdzf5k6dnw
4qs/r1r79sBJybHY1zJkk9wtAgQgFJabHkj1G6kTpng/hn+GSNC70daTjmS2ESoF48GxeF71rj6F6dOKIemhgQEVR1AZzMy
6xTqgKe=

server.example.com ssh-ed25519 AAAAC3NzaCllZDIINTES5AAAAIGI7LCGSofu9Z0oR/XqpQD1FSnwAevVzzuCAmo3
YLalr

[pwuser@client ~1$%

11



Demo 2: pubkey



() @ (3 ssh_lab — -zsh —127x35

-zsh -zsh -zsh podman « podman-compose up 'z

# Demo: SSH login with publich-key auth
#
# connect to server

ssh -1 pubkeyuser server.example.com

# observe: does not ask password, but also on server no authorized_keys file
1s -la .ssh/

# check on the server how the password lookup is done:

cat /etc/ssh/sshd_config.d/pubkey.conf A
# AuthorizedKeysFile none —> file will be ignored, user cannot place their own keys here
# otherwise: you could use from the client: ssh-copy-id

/usr/bin/kanidm_ssh_authorizedkeys_direct -D anonymous pubkeyuser # —> returns the pubkey of user
/usr/bin/kanidm_ssh_authorizedkeys_direct -D anonymous other_user # —> will return empty/error

# try out the public key lookup from identity management (oftentimes done by sss_ssh_authorizedkeys)
# risk: private key file on client might get compromised

[pubkeyuser@client ~]$

[pubkeyuser@client ~1$

[pubkeyuser@client ~]$ ssh -1 pubkeyuser server.example.com

The authenticity of host 'server.example.com (172.20.0.5)' can't be established.
ECDSA key fingerprint is: SHA256:jt1YUkKgCL28z1kZ1rFSOvbyHb7Pt3tGgJA9y1A0694

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'server.example.com' (ECDSA) to the list of known hosts.
server says,

I || | |/ / |
=t rc_trrrrr Il | — 1 (] (—
— | || I
I I | I

N N |
I ) 1—) |

-zsh

13



[ ) @ ssh_lab — -zsh — 127x35

-zsh -zsh -zsh podman « podman-compose up < -zsh +

server says,

~
~

Congratulations, you're logged in now!

[23:31 pubkeyuser@server ~]$

[23:31 pubkeyuser@server ~]$ cat /etc/ssh/sshd_config.d/pubkey.conf
# pubkeyuser can only do passwordless auth, this is more secure
Match User pubkeyuser 3

PasswordAuthentication no
PubkeyAuthentication yes

# we don't use keys file in user's home
AuthorizedKeysFile none

# alternative: user can add _public_ keys here
# AuthorizedKeysFile ~/.ssh/authorized_keys

# we fetch the ssh key from the idm server (or other sources), no need for authorized_keys file
AuthorizedKeysCommand /usr/bin/kanidm_ssh_authorizedkeys_direct -D anonymous %u
[23:32 pubkeyuser@server ~1$ /usr/bin/kanidm_ssh_authorizedkeys_direct -D anonymous pubkeyuser
ssh—ed25519 AAAAC3NzaCllZDIINTES5AAAAIBhmjkMy3ft5LuvvuFzd/vDbHxYc@sadYDMxidXCDotk pubkeyuser@client.example.com
[23:32 pubkeyuser@server ~1%
[23:32 pubkeyuser@server ~1$ /usr/bin/kanidm_ssh_authorizedkeys_direct -D anonymous other_user
ERROR Failed to retrieve SSH keys for other_user — Http(404, Some
(NoMatchingEntries), "731ff205-c270-44f9-bc94-2a441a0f0cl16")
Error: ()
[23:32 pubkeyuser@server ~1$
[23:32 pubkeyuser@server ~1%
exit

14



Demo 3: certificates



(® O ssh_lab — podman « demo3_cert.sh —127x35

...cts/ssh_lab — podman « demo3_cert.sh -zsh -zsh podman « podman-compose up 3% ! -zsh +

erich.birngruber@nbm-gmi-89 ssh_lab % ./demo3_cert.sh (main)ssh_1lab
bootstrapping step CA config

The root certificate has been saved in /home/certuser/.step/certs/root_ca.crt.

The authority configuration has been saved in /home/certuser/.step/config/defaults.json.

installing SSH host CA

# get ssh credentials from the CA

step ssh login —-provisioner idm

ssh server.example.com

# inspect credentials in ~/.ssh/
find ~/.ssh/

# list certificate in agent
ssh-add -1

# create keys and certificate:
step ssh certificate ——provisioner idm demo ~/.ssh/id_ecdsa_demo —-insecure —-no-password

# inspect credentials in ~/.ssh/
find ~/.ssh/

# inspect certificate, check lifetime
ssh-keygen -L -f ~/.ssh/id_ecdsa_demo-cert.pub

# connect with cert file to server
ssh —i ~/.ssh/id_ecdsa_demo-cert.pub server.example.com

# on the server check config
cat /etc/ssh/sshd_config.d/certuser.conf

Agent pid 104

[certuser@client ~]$ step ssh login ——provisioner idm
v Provisioner: idm (0IDC) [client: stepssh]

Cannot open a web browser on your platform.

16



(o (@] ssh_lab — podman « demo3_cert.sh — 127x35

b — podman « demo3_cert.sh -zsh -zsh podman « podman-compose up %, ] -zsh +

[certuser@client ~]$ step ssh login ——provisioner idm
v Provisioner: idm (0IDC) [client: stepssh]
Cannot open a web browser on your platform.

Open a local web browser and visit:

https://idm.example.com:8443/ui/oauth2?client_id=stepssh&code_challenge=zqdY1f6HPAXx93zQ9jJwY4JVCBnGby4cpjL-hWwZ6Hxs&code_challe
nge_method=S256&nonce=05dda360553baaladcf54df4c540372132c5be08602e36946b04019132ddc124&redirect_uri=http%3A%2F%2F127.0.0.1%3A50
00&response_type=code&scope=openid+email&state=DwWvuTWKC75t3fxq4bqM1lbb5RbMIfKNw

v CA: https://ca.example.com:9000 [N
v SSH Agent: yes

[certuser@client ~]$ ssh server.example.com

server says,

/ I
| | I
O\ \| |\ \|
|
|

RN
[/ /1| I | / \ / \ \

I
[
-~
|/
~

Congratulations, you're logged in now!

[23:37 certuser@server ~]$

exit

Connection to server.example.com closed.
[certuser@client ~]$ find ~/.ssh/

/home/certuser/.ssh/

/home/certuser/.ssh/config
/home/certuser/.ssh/known_hosts
/home/certuser/.ssh/agent
/home/certuser/.ssh/agent/s.DXC6vDC5Eq.agent.veA2ETz6h8
[certuser@client ~]$ ssh-add -1

256 SHA256:M5kNd475wWw@HSNA7BCo7 f8xVmOUYoE/mB61BEnw/zY (ECDSA-CERT)
[certuser@client ~]%

17



(o [ ) ssh_lab — podman « demo3_cert.sh —127x35

podman « demo3_cert.sh -zsh -zsh podman « podman-compose up ! -zsh +

[certuser@client ~1%

[certuser@client ~]1$ step ssh certificate ——provisioner idm demo ~/.ssh/id_ecdsa_demo —-insecure —-no-password
Provisioner: idm (0IDC) [client: stepsshl

Cannot open a web browser on your platform.

Open a local web browser and visit:

https://idm.example.com:8443/ui/oauth2?client_id=stepssh&code_challenge=5-nMbZ8qcIUj9Uewj4wl_Rzs-JkUQZpgvsuMP2_LHxo&code_challe
nge_method=5256&nonce=96026332c7a0280e6f5d32ef4c6381f57d7cd8d8d9d461a271f0172c60e5037Ff&redirect_uri=http%3A%2F%2F127.0.0.1%3A50
00&response_type=code&scope=openid+email&state=r190080xrOwGZIdgo1ThBXtCdvd6oM81

CA: https://ca.example.com: 9000
Private Key: /home/certuser/.ssh/id_ecdsa_demo
Public Key: /home/certuser/.ssh/id_ecdsa_demo.pub
Certificate: /home/certuser/.ssh/id_ecdsa_demo-cert.pub
SSH Agent: yes
[certuser@client ~]$ ssh-keygen -L -f ~/.ssh/id_ecdsa_demo-cert.pub
/home/certuser/.ssh/id_ecdsa_demo-cert.pub:
Type: ecdsa-sha2-nistp256-cert-v@l@openssh.com user certificate
Public key: ECDSA-CERT SHA256:9DiabMYK53TX0zFzehmz4xM7JpD8Lyv0Ocn2YvzX5jS4
Signing CA: ECDSA SHA256:RQralyQGBAEpFk6hmvTALeg1h9bbi/i/*VhXWH@sa6M (using ecdsa-sha2-nistp256)
Key ID: "certuser@example.com"
Serial: 6255454290763442738
Valid: from 2026-01-30T23:37:06 to 2026-01-31T15:38:06
Principals:
certuser
certuser@example.com
Critical Options: (none)
Extensions:
permit-X11-forwarding
permit-agent-forwarding
permit-port-forwarding
permit-pty
permit-user-rc
[certuser@client ~1$%

18



(® O ssh_lab — podman « demo3_cert.sh —127x35

...cts/[ssh_lab — podman « demo3_cert.sh -zsh -zsh

Key ID: "certuser@example.com"
Serial: 6255454290763442738
Valid: from 2026-01-30T23:37:06 to 2026-01-31T15:38:06
Principals:
certuser
certuser@example.com
Critical Options: (none)
Extensions:
permit-X11-forwarding
permit-agent-forwarding
permit-port-forwarding
permit-pty
permit-user-rc
[certuser@client ~]%
[certuser@client ~]$ ssh -i ~/.ssh/id_ecdsa_demo-cert.pub server.example.com
server says,

|/ / |

|/
~
|/
=
|/
=
L
|/
~

Congratulations, you're logged in now!

[23:38 certuser@server ~]$ cat /etc/ssh/sshd_config.d/certuser.conf
Match User certuser

PasswordAuthentication no

PubkeyAuthentication yes

TrustedUserCAKeys /etc/ssh/ssh_user_ca_key.pub

[23:38 certuser@server ~1$ [

podman « podman-compose up

Y

-zsh

19



Demo 4: OPKSSH



(® O ssh_lab — podman « demo4_opkssh.sh — 127x35

sh_lab — podman « demo4_opkssh.sh ( -zsh
erich.birngruber@nbm-gmi-89 ssh_lab % ./demo4_opkssh.sh

# check OPKSSH config, run login (DNS match!)
cat .opk/config.yml
opkssh login

# somehing happened.... can we login now?
ssh -1 opkuser server.example.com

# yes, we can - but how? also check server side
cat /etc/ssh/sshd_config.d/opkuser.conf

# check locally A
find .ssh

# check what's in this cert
opkssh inspect ~/.ssh/id_ecdsa-cert.pub
./inspect.sh

# one more thing: SSHFP DNS records
dig SSHFP server.example.com

[opkuser@client ~]$ cat .opk/config.yml

# client config see https://github.com/openpubkey/opkssh/blob/main/docs/config.md

default_provider: demo
providers:

# for this demo

— alias: demo

issuer: https://idm.example.com:8443/o0auth2/openid/opkssh

client_id: opkssh

scopes: openid email profile
access_type: offline

prompt: consent
redirect_uris:

-zsh

podman « podman-compose up =7

-zsh . 4

(main)ssh_lab

21



(® O ssh_lab — podman « demo4_opkssh.sh — 127x35

podman « demo4_opkssh.sh -zsh -zsh podman « podman-compose up  %,s

-zsh . 4

- http://localhost:3000/1login—-callback
# — http://localhost:10001/1login—-callback
# — http://localhost:11110/1login-callback

[opkuser@client ~1$%

[opkuser@client ~1%

[opkuser@client ~]$ opkssh login

INFO[@000] listening on http://127.0.0.1:3000/

[NFO[0000] press ctrl+c to stop

[NFO[0000] Opening browser to http://localhost:3000/1login

ERRO[0000] Failed to open url: exec: "xdg-open": executable file not found in $PATH
Writing opk ssh public key to /home/opkuser/.ssh/id_ecdsa-cert.pub and corresponding secret key to /home/opkuser/.ssh/id_ecdsa
Keys generated for identity [N

Email, sub, issuer, audience:

opkuser@example.com 9f508b80-ea7c-4954-bb30-4bb251d5001b https://idm.example.com:8443/0auth2/openid/opkssh opkssh
[opkuser@client ~1$%

[opkuser@client ~1$%

[opkuser@client ~]$ ssh -1 opkuser server.example.com

The authenticity of host 'server.example.com (172.20.0.5)' can't be established.
ECDSA key fingerprint is: SHA256:jt1YUkKgCL28z1kZ1rFSOvbyHb7Pt3tGgJA9ylAo6g4
Matching host key fingerprint found in DNS.

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'server.example.com' (ECDSA) to the list of known hosts.
server says,

L
|/
~

Congratulations, you're logged in now!

[23:43 opkuser@server ~1%

22



(® O ssh_lab — podman « demo4_opkssh.sh — 127x35

ssh_lab — podman « demo4_opkssh.sh ( -zsh

[23:43 opkuser@server ~]$ cat /etc/ssh/sshd_config.d/opkuser.conf
# OpenPubkey specifics

Match User opkuser

AuthorizedKeysCommand /usr/local/bin/opkssh verify %u %k %t
AuthorizedKeysCommandUser nobody

[23:43 opkuser@server ~]$

[23:43 opkuser@server ~1$%

exit

Connection to server.example.com closed.

[opkuser@client ~1$%

[opkuser@client ~1$%

[opkuser@client ~]$ opkssh inspect ~/.ssh/id_ecdsa-cert.pub
——— SSH Certificate Information ——-

Serial: 0
Type: User Certificate A
Key ID: opkuser@example.com
Principals: [
Valid After: Not set
Valid Before: Forever
Critical Options: mapl]
Extensions:
permit-pty:

permit-user-rc:

openpubkey-pkt: [PKToken datal 1242 bytes
permit-X11-forwarding:
permit-agent-forwarding:
permit-port-forwarding:

——— PKToken Structure ——
Payload:
{

"aud": "opkssh",

-zsh

podman « podman-compose up

Py

-zsh

23



(® O ssh_lab — podman « demo4_opkssh.sh — 127x35

ssh_lab — podman « demo4_opkssh.sh ( -zsh -zsh

——— PKToken Structure ——
Payload:

{

}

"aud": "opkssh",
Ilazpll: Ilopksshll’
"email": "opkuser@example.com",
"email_verified": true,
"exp": 1769817475,
"groups": [
"allow_root",
"important_user",
"stepssh",
lluserll
1,
"iat": 1769816575,
"iss": "https://idm.example.com:8443/oauth2/openid/opksshk,
"jti": "55ea9208-16f4-4b03-9246-bbc00aeacdoc",
"name": "OPK User",
"nbf": 1769816575,
"nonce": "5vEw72B9Hko65VEeV3gNh@@SPuhPioH_7QSpC_ukSzc",
"preferred_username": "opkuser@idm.example.com",
"scopes": [
"email",
"openid",
"profile"
1,
"sub": "9f508b80-ea7c-4954-bb30-4bb251d5001b"

——— Signature Information ——
Provider Signature (OP) exists

{

"alg": "ES256",
"kid": "ecab6fbdd688ald679a5e9dd184ea238e"

podman « podman-compose up 3,

-zsh

24



(® O ssh_lab — podman « demo4_opkssh.sh — 127x35

podman « demo4_opkssh.sh

—-—— Token Metadata ———
https://idm.example.com:8443/0auth2/openid/opkssh

Issuer:
Audience:
Subject:
Identity:
Token Hash:

[opkuser@client ~]$
[opkuser@client ~1$%
[opkuser@client ~]$ dig SSHFP server.example.com

; <<>> DiG 9.20.18 <<>> SSHFP server.example.com

opkssh

-zsh

-zsh podman « podman-compose up s -zsh

9f508b80-ea7c-4954-bb30-4bb251d5001b

9f508b80-ea7c-4954-bb30-4bb251d5001b https://idm.example.com:8443/0auth2/openid/opkssh
rSAmhL6h5Q2mQkgRHvqRe0s—pRHKmbeI81lga_Y7hqro

Provider Algorithm: ES256

;3 global options: +cmd

;3 Got answer:

;3 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 10170
;3 flags: qr aa rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: @, ADDITIONAL: 1

73 OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096
;3 QUESTION SECTION:
;server.example.com.

73 ANSWER SECTION:

server.example.
server.example.
server.example.
server.example.
server.example.
server.example.

com.
com.
com.
com.
com.
com.

(SSRGS SRS

;3 Query time: 2 msec
20.0.1#53(172.20.0.1) (UDP)

73 SERVER: 172.

77 WHEN: Fri Jan 30 23:44:12 UTC 2026

;3 MSG SIZE rcvd: 287

IN

IN
IN
IN
IN
IN
IN

SSHFP

SSHFP
SSHFP
SSHFP
SSHFP
SSHFP
SSHFP

PP WWMALDN
RPNRNRLN

FOF7C23A9086F9984E624466B15EFE1B243164A8C96A24F029D34FD7 90BBA6C5
CF880618201B8E97563DB8D5ACEFBCA1D6EB3D89
8EDD585242A008BDBCCF591996B1523AF6F21DBECFB77B4680903DCA 5028EAQE
ECC60371F699E35BBAD9B4BFF1C078C2D9A9D81E
FOB1BOBABECBBB45BB1F5FEB6418B7BD27AED547B9DFC1DE74E8AA91 3D2DBI9CD
64F20B2C19647FB91271BB920EAAB4011E7EB870

25



Thanks for the fish!



	Slide 1: SSH logins in practice: certificates vs OPKSSH
	Slide 2: Looking into SSH logins - why?
	Slide 3: The lab setup “ssh_lab”
	Slide 4: Demo time …
	Slide 5: Conclusion
	Slide 6: Thank you!
	Slide 7: Resources
	Slide 8: Slides of last resort
	Slide 9: Demo 1: password
	Slide 10
	Slide 11
	Slide 12: Demo 2: pubkey
	Slide 13
	Slide 14
	Slide 15: Demo 3: certificates
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Demo 4: OPKSSH
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Thanks for the fish!

