
https://www.pengutronix.de

Build Once, Trust Always

Ahmad Fatoum – a.fatoum@pengutronix.de

Single-Image Secure Boot with barebox

Embedded, Mobile and Automotive
Devroom

mailto:a.fatoum@pengutronix.de

 2/29

 Ahmad Fatoum
 Pengutronix

 a3f 
 a.fatoum@pengutronix.de

@a3f@fosstodon.org 

About Me

 Kernel and Bootloader Porting
 Driver and Graphics

Development
 System Integration
 Embedded Linux Consulting

https://github.com/a3f
mailto:a.fatoum@pengutronix.de
https://fosstodon.org/@a3f

 3/29

Verified Boot 📈

 Most new embedded products secure the boot chain
 Often motivated by upcoming EU regulation

 For many embedded systems, this takes the form of a
verified boot chain

 4/29

FIT

An Example Verified Boot Chain

BootROM Bootloader
OS

https://www.amazon.de/-/en/SIBA-Pack-Glass-Fuses-Characteristics/dp/B0DG6TL249?th=1

RSA EC

eFuses

Root of Trust

ramdisk
FDT

dm-verity
RootFS

verifyverifyverifyverify

️dm

 5/29

FIT

A Broken Verified Boot Chain

BootROM Bootloader
OS

https://www.amazon.de/-/en/SIBA-Pack-Glass-Fuses-Characteristics/dp/B0DG6TL249?th=1

RSA EC

eFuses

ramdisk
FDT

dm-verity
RootFS

verifyverifyverifyverify

Root of Trust

️dm

 6/29

Securing the bootloader

 Mostly about restriction:
 Restrict what it can do
 Restrict what can be done with it

 Far reaching consequences:
 Development is more awkward
 Testing is more complex
 Maintenance is more work
 Complexity (and thus risk) is higher
 Manufacturing and field service is more involved

 Solution required to accommodate the different use cases

 7/29

Securing the bootloader

 Developers solve problems.

If the problem is cumbersome development, they will solve
that, but...

 State in the field may be become inadequately tested→

 Greatly increases project risk→

 8/29

Device Lifecycle

 Security must account for life cycle state
Development ≠ Provisioning ≠ In-Field ≠ RMA

 Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

 9/29

Device Life cycle

 Security must account for life cycle state
Development ≠ Provisioning ≠ In-Field ≠ RMA

 Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

Nintendo tried to destroy [the SD Cards used in
the Nintendo factory setup process for installing
the software to the Wii and Wii U systems] by
crushing them and bending them in the middle.
About 25% of the cards were still functional with
a little straightening and convincing and I was
able to recover the data.

DeadlyFoez writes1 on 17/06/2025 🔗

https://consolebytes.com/wii-u-sdboot1-exploit-paid-the-beak/

 10/29

Device Life cycle

 Security must account for life cycle state
Development ≠ Provisioning ≠ In-Field ≠ RMA

 Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

 Image should verify that the state is correct
If we go the extra step and implement sensible fallback behavior, we
can address different situations with the same image
Complexity is still there, but if life cycle is in common code, it's more
feasible to test it
In summary, less images better than more images

 11/29

Device Life cycle

 Security must account for life cycle state
Development ≠ Provisioning ≠ In-Field ≠ RMA

 Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

 Image should verify that the state is correct
 If we go the extra step and implement sensible fallback behavior, we

can address different situations with the same image
Complexity is still there, but if life cycle is in common code, it's more
feasible to test it
In summary, less images better than more images

 12/29

Device Life cycle

 Security must account for life cycle state
Development ≠ Provisioning ≠ In-Field ≠ RMA

 Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

 Image should verify that the state is correct
 If we go the extra step and implement sensible fallback behavior, we can

address different situations with the same image

 Complexity is only shifted around: With life cycle handling in common
code, it's more feasible to test it

 In summary, the fewer the images, the better

 13/29

Fuse-based State Transitions

 14/29

Problem: OP-TEE RPMB Key Provisioning

 OP-TEE is often provisioned with device-specific certificates
 Certificates need to be sealed with a device-specific key, but:

 Key is only available after verified boot is activated!
 Key storage is only possible after eMMC RPMB Key is written

 Problem: Enabling CFG_RPMB_WRITE_KEY in the default configuration
is a security vulnerability

 Attacker can replace the eMMC and snoop plain-text key transfer!
 Traditional solution: Multiple images for factory and use in the field.

 If factory image is leaked, attacker can modify RPMB contents

 15/29

Solution?: Fuse-based state transitions

 Always enable CFG_RPMB_WRITE_KEY
 Before key write: ensure specific eFuse is not blown
 After key write: Blow the eFuse

 i.MX On-Chip OTP support: https://github.com/OP-TEE/optee_os/pull/7594
 Write Key is one time operation Single OP-TEE image!→
 https://github.com/OP-TEE/optee_os/pull/7597
 Fruitful upstream discussion

 Move actual RPMB programming out of OP-TEE
 Add pseudo TA to retrieve RPMB key in the factory:
 Still gated behind eFuse not being blown + some replay protection

https://github.com/OP-TEE/optee_os/pull/7594
https://github.com/OP-TEE/optee_os/pull/7597

 16/29

Access Control

 17/29

Access Control? in the bootloader?!

 Bootloader runtime access control is a mess
 Core issue: Individual threat model defines 'secure'
 Applying a security policy goes very deep into bootloader guts

if (lockdown) {
bootm_force_signed_images();

} else {
struct console_device *console;
console = of_console_by_stdout_path();
console_set_active(console, CONSOLE_STDIOE);
of_pinctrl_select_state(console->dev->of_node,
"open");

}

 This kind of code is usually not upstreamed

 18/29

Introducing barebox Security Policies

 Generic code consults the active policy as needed:

int getchar(void)
{

if (!IS_ALLOWED(SCONFIG_CONSOLE_INPUT))
return -1; /* or -EPERM */

/* do stuff */
}

 Check directly at the security-sensitive operation (instead of
merely marking a console read-only) More future-proof →

 19/29

barebox Security Policies: Visualized

security_oldconfig

security_menuconfig

make target interactively
prompts for one or
more security policies

 myboard-lockdown.sconfig - Barebox Security Configuration
 → General Settings ──
┌──────────────────────── General Settings ─────────────────────┐
│ ┌───┐ │
│ │[] Allow console input │ │
│ │[*] Allow executing shell scripts │ │
│ │[] Allow loading barebox environment from persistent media│ │
│ │[] Allow Fastboot OEM commands │ │
│ └───┘ │
├───┤
│ <Select> < Exit > < Help > < Save > < Load > │
└───┘

 20/29

barebox Security Policies: Visualized

devel
.sconfig

lockdown
.sconfig

factory
.sconfig

security_oldconfig

security_menuconfig

Policies are text files
normalized by Kconfig

SCONFIG_POLICY_NAME="lockdown"
SCONFIG_SECURITY_POLICY_SELECT=y

General Settings
SCONFIG_CONSOLE_INPUT is not set
SCONFIG_SHELL=y
SCONFIG_ENVIRONMENT_LOAD is not
set
end of General Settings

Boot Policy
SCONFIG_BOOT_UNSIGNED_IMAGES is
not set
end of Boot Policy

 21/29

barebox Security Policies: Visualized

devel
.sconfig

lockdown
.sconfig

factory
.sconfig

security_oldconfig

security_menuconfig

Policies are
postprocessed into
objects and linked
into barebox

 22/29

barebox Security Policies: Visualized

devel
.sconfig

lockdown
.sconfig

factory
.sconfig

security_oldconfig

security_menuconfig

A missing security
policy in a secure
system triggers a
panic

Set defaultSet default
policypolicy

Build-time
.config

Should be the
most

restrictive

 23/29

Board
code

barebox Security Policies: Visualized

devel
.sconfig

lockdown
.sconfig

factory
.sconfig

security_oldconfig

security_menuconfig
ChooseChoose

Active Policy do
stuff

Board code contains
the custom logic to
choose the policy

 24/29

Board
code

barebox Security Policies: Visualized

devel
.sconfig

lockdown
.sconfig

factory
.sconfig

security_oldconfig

security_menuconfig
ChooseChoose

Active Policy

Policy Mechanism

do
stuff

Clean separation:
1)Decide what's allowed in

each state at-build time
2)Select active policy
3)Enforce decisions

 25/29

Policy selection example

/*
 * 00: Factory mode, straight to devel mode
 * x1: Factory done, no escape
 * 10: Test mode, go to factory done, allow to escape to devel
 */
otp = nvmem_cell_read(factory_nvmem_cell, &len);
if (IS_ERR(otp)) {
 pr_err("Failed to read factory mode: %pe\n", otp);
 return security_policy_select("lockdown");
}

/* no fuse burnt, go to devel mode */
if (!(otp[0] & FUSE_FACTORY_DONE))
 return security_policy_select("devel");

/* Default is lockdown */

 Board code selects security policy

 26/29

Runtime Unlocking

 27/29

Unlocking developer devices

/*
 * At this point we know that we are in factory done test mode.
 * Ask the user if they want to escape to devel mode.
 */
pr_info("Factory fuse intact. Press <d> to enter devel mode\n");

start = get_time_ns();

while (!is_timeout(start, 5 * SECOND)) {
 if (!console->tstc(console))
 continue;

 c = console->getc(console);
 if (c == 'd') {
 pr_notice("<d> pressed, entering devel mode\n");
 return security_policy_select("devel");
 }
}

 28/29

Unlocking production devices

 Unlock token must be signed
 So far: Json Web Tokens (JWT) with RSA signatures
 New: TLV format and ECDSA signatures

 See Jonas' talk here in this devroom at 12:00 🔗
 Unlock token must not be transferable across devices

 A SoC unique ID: barebox_get_soc_uid_bin() 🔗
 A datum in replay-protected memory

(e.g. Android Verified Boot TA)

https://fosdem.org/2026/schedule/event/97DP7F-tamper-resistant_factory_data_from_the_bootloader/
https://lore.barebox.org/barebox/20251117-soc-uid-v2-1-a2415bf9133d@pengutronix.de/

 29/29

Future Outlook
 Generic "System Data" TA

 Key/Value-Store with rollback protection / write once

 Securely configure a different security policy with rollback
protection

 More memory leaks fixed since introductory talk in August 🔗:

 Soon submission for oss-fuzz?

 Passing along the security policy to Linux
(ConditionKernelCommandLine= ?)

Questions?

On the web: barebox.org/demo
ML: barebox@lists.infradead.org
Archive: lore.kernel.org/barebox
Github: github.com/barebox
Mastodon: @barebox@fosstodon.org
Matrix: #barebox:matrix.org

barebox security documentation:

https://www.youtube.com/watch?v=dermEhoAu1I
https://barebox.org/demo
https://lists.infradead.org/mailman/listinfo/barebox
https://lore.kernel.org/barebox
https://github.com/barebox/barebox
https://fosstodon.org/@barebox
https://app.element.io/#/room/%23barebox:matrix.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

