Embedded, Mobile and Automotive

Fos D E M’ 26 Devroom

Build Once, Trust Always

Single-Image Secure Boot with barebox

Ahmad Fatoum — a.fatoum@pengutronix.de

rPe\ngutromx
! https://www.pengutronix.de

mailto:a.fatoum@pengutronix.de

About Me

Ahmad Fatoum
Pengutronix

a3f(4
a.fatoum@pengutronix.de

@a3f@fosstodon.org (4

® QO e

Kernel and Bootloader Porting

Driver and Graphics
Development

System Integration
Embedded Linux Consulting

2/29

https://github.com/a3f
mailto:a.fatoum@pengutronix.de
https://fosstodon.org/@a3f

Verified Boot ~/

= Most new embedded products secure the boot chain

= Often motivated by upcoming EU regulation

* For many embedded systems, this takes the form of a
verified boot chain

ﬁ 3/29

An Example Verified Boot Chain

s s P E ‘ —
b { &) . < dm

BootROM [Bootloader FIT dm-verity
RootFS

ash(

nnnnnnnnnnnnnn

1858 85 8800
verify

https://www.amazon.de/-/en/SIBA-Pack-Glass-Fuses-Characteristics/dp/BODG6TL2497th=1

A Broken Verified Boot Chain

s s P E ‘ —
b { &) . < dm

BootROM W Bootloader dm-verity

— ROOIFS
UL] EEEN ECEN
verify
L]

5/29
https://www.amazon.de/-/en/SIBA-Pack-Glass-Fuses-Characteristics/dp/BODG6TL2497th=1 ﬁ

Securing the bootloader

Mostly about restriction:
" Restrict what it can do
Restrict what can be done with it

Far reaching consequences:

" Development is more awkward

Testing is more complex

Maintenance is more work

Complexity (and thus risk) is higher
Manufacturing and field service is more involved

Solution required to accommodate the different use cases

ﬁ 6/29

Securing the bootloader

= Developers solve problems.

If the problem is cumbersome development, they will solve

that, but...
— State in the field may be become inadequately tested

— Greatly increases project risk

ﬁ 7/29

Device Lifecycle

Security must account for life cycle state
Development # Provisioning # In-Field # RMA

Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

ﬁ 8/29

Device Life cycle

Security must account for life cycle state
Development # Provisioning # In-Field # RMA

Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

DeadlyFoez writes1 on 17/06/2025 ¢

Nintendo tried to destroy [the SD Cards used in &
the Nintendo factory setup process for installing .
the software to the Wii and Wii U systems] by ' o
crushing them and bending them in the middle. Z
About 25% of the cards were still functional with _g
a little straightening and convincing and I was
able to recover the data.

https://consolebytes.com/wii-u-sdboot1-exploit-paid-the-beak/

Device Life cycle

Security must account for life cycle state
Development # Provisioning # In-Field # RMA

Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

Image should verify that the state is correct

Device Life cycle

Security must account for life cycle state
Development # Provisioning # In-Field # RMA

Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

Image should verify that the state is correct

If we go the extra step and implement sensible fallback behavior, we
can address different situations with the same image

Device Life cycle

Security must account for life cycle state
Development # Provisioning # In-Field # RMA

Encoding life cycle state solely into the image is a disaster waiting to
happen if the image leaks

Image should verify that the state is correct

If we go the extra step and implement sensible fallback behavior, we can
address different situations with the same image

Complexity is only shifted around: With life cycle handling in common
code, it's more feasible to test it

In summary, the fewer the images, the better

ﬁ 2/29

Fuse-based State Transitions

ﬁ 3/29

Problem: OP-TEE RPMB Key Provisioning

OP-TEE is often provisioned with device-specific certificates

Certificates need to be sealed with a device-specific key, but:
" Key is only available after verified boot is activated!

Key storage is only possible after eMMC RPMB Key is written

" Problem: Enabling CFG RPMB WRITE KEY in the default configuration
IS a security vulnerability

" Attacker can replace the eMMC and snoop plain-text key transfer!

Traditional solution: Multiple images for factory and use in the field.
" If factory image is leaked, attacker can modify RPMB contents #

Solution?; Fuse-based state transitions

" Always enable CFG_RPMB WRITE KEY
Before key write: ensure specific eFuse is not blown
After key write: Blow the eFuse
I.MX On-Chip OTP support: https://github.com/OP-TEE/optee_os/pull/7594
Write Key is one time operation - Single OP-TEE image!
" https://github.com/OP-TEE/optee_os/pull/7597

Fruitful upstream discussion
Move actual RPMB programming out of OP-TEE
Add pseudo TA to retrieve RPMB key in the factory:
Still gated behind eFuse not being blown + some replay protection

https://github.com/OP-TEE/optee_os/pull/7594
https://github.com/OP-TEE/optee_os/pull/7597

Access Control

Access Control? in the bootloader?!

Bootloader runtime access control is a mess
" Coreissue: Individual threat model defines ‘secure’

Applying a security policy goes very deep into bootloader guts

if (lockdown) {
bootm force signed images();

} else {
struct console device *console;
console = of console by stdout gath
console set actlve(console, CONSOLE STDIOE),
of plngfrl select state(console->dev->o0f node,
Ilopenll :

}
= This kind of code is usually not upstreamed ﬁ7/29

Introducing barebox Security Policies

" Generic code consults the active policy as needed:

int getchar(void)

{
if (!IS_ALLOWED(SCONFIG_CONSOLE_INPUT))

return -1; /* or -EPERM */

/* do stuff */
}

" Check directly at the security-sensitive operation (instead of
merely marking a console read-only) -» More future-proof ﬁg/zg

barebox Security Policies: Visualized

myboard-lockdown.sconfig - Barebox Security Configuration
- General Settings

General Settings

] Allow console input)
*] Allow executlng shell scripts
a

[
[
. . [] Allow loading rebox environment from persistent media
secu r1ty_oldconflg [1 Allow Fastboot OEM commands

Security menuconfig <Select> < Exit > < Help > < Save > < Load >

make target interactively
prompts for one or
more security policies

barebox Security Policies: Visualized

devel
.sconfig

SCONFIG_POLICY NAME="lockdown"
SCONFIG_SECURITY_POLICY_ SELECT=y

]] # General Settings _
security menuconfig faCtory # SCONFIG CONSOLE_INPUT is not set

: SCONFIG SHELL=
.sconfig

security oldconfig

iCONFIG_ENVI ONMENT_LOAD is not
se
end of General Settings

Boot Polic
SCONFIG BOOT UNSIGNED IMAGES is

Policies are text files
not set

normalized by Kconfig lockdown # end of Boot Policy

.sconfig

barebox Security Policies: Visualized

security oldconfig

security menuconfig

Policies are
postprocessed into
objects and linked
into barebox

devel
.sconfig

factory
.sconfig

lockdown
.sconfig

barebox Security Policies: Visualized

security oldconfig

security menuconfig

A missing security
policy in a secure
system triggers a
panic

Should be the
devel most Bild-time
.sconfig restrictive .config
factory Set defau:/r
.sconfig =

policy

lockdown

.sconfig

barebox Security Policies: Visualized

devel
.sconfig

security oldconfig

security_menuconfig factory

.sconfig do

stuff

Board code contains
the custom logic to
choose the policy

lockdown
.sconfig

barebox Security Policies: Visualized

devel
.sconfig

security oldconfig

security_menuconfig factory
.sconfig ™

Clean separation:
1)Decide what's allowed in

each state at-build time lockdown ([Mechanism |

2)Select active policy .sconfig
§oes

3)Enforce decisions

Policy selection example

 Board code selects security policy

/*
* 00: Factory mode, straight to devel mode
* x1: Factory done, no escape
:/10: Test mode, go to factory done, allow to escape to devel
otp = nvmem_cell_read(factory nvmem_cell, &len);
1f (IS_ERR(otp)) {.
pr_err("Failed to read factory mode: %pe\n", otp);
return security policy select("lockdown");

}

/* no fuse burnt, go to devel mode */
1f (!(otp[0] & FUSE_FACTORY_DONE))
return security policy select("devel");

/* Default is lockdown */

Runtime Unlocking

Unlocking developer devices

/*
* At this point we know that we are in factory done test mode.

I Ask the user if they want to escape to devel mode.

pr_info("Factory fuse intact. Press <d> to enter devel mode\n");
start = get_time_ns();

while ('!'is_timeout(start, 5 * SECOND)) {
1f (!console->tstc(console))
continue;

c = console->getc(console);

if (c == 'd") { _
pr_notice("<d> pressed, enterlng devel mode\n");
return security policy select("devel");

}

Unlocking production devices

" Unlock token must be signed
" So far:Json Web Tokens (JWT) with RSA signatures

" New: TLV format and ECDSA signatures
" SeeJonas' talk here in this devroom at 12:00 ¢

" Unlock token must not be transferable across devices
" ASoCunique ID: barebox get soc uid bin()

" Adatum in replay-protected memory
(e.g. Android Verified Boot TA)

https://fosdem.org/2026/schedule/event/97DP7F-tamper-resistant_factory_data_from_the_bootloader/
https://lore.barebox.org/barebox/20251117-soc-uid-v2-1-a2415bf9133d@pengutronix.de/

Future Outlook

Generic "System Data" TA
= Key/Value-Store with rollback protection / write once

= Securely configure a different security policy with rollback
protection

More memory leaks fixed since introductory talk in August ¢¢/:

. Soon submission for oss-fuzz?

Passing along the security policy to Linux
(ConditionKernelCommandLine="?)

Questions?

BARE
BOX

On the web: barebox.org/demo

ML: barebox@lists.infradead.org
Archive: lore.kernel.org/barebox
Github: github.com/barebox
Mastodon: @barebox@fosstodon.org
Matrix: #barebox:matrix.org

barebox security documentation:

https://www.youtube.com/watch?v=dermEhoAu1I
https://barebox.org/demo
https://lists.infradead.org/mailman/listinfo/barebox
https://lore.kernel.org/barebox
https://github.com/barebox/barebox
https://fosstodon.org/@barebox
https://app.element.io/#/room/%23barebox:matrix.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

