Zero to matmul with the ET-SoC-1

FOSDEM 2026, Al Plumbers devroom

Zero to matmul with the ET-SoC-1

FOSDEM 2026, Al Plumbers devroom

Hopefully everyone in the room knows what zero is, and knows what matmuls are. If you were in the room for the previous talk from Gianluca, then you’ll know what ET-
SoC-1 is. For the benefit of anyone just joining us, ET-SoC-1 is a piece of hardware.

You can find this piece of hardware on cute little PCle boards, such as this one.

All of the interesting bits are within this pink rectangle: four DRAM chips on the edges, and then the main ASIC under the blue heatsink.

< < 3
oz o >4
o o (e
o o o
o o o
= = =4
= £ (=)
Q Q]
<+ < <+
L I Sk <dfZZ
s |Dooo = |DOog s |O000 s |8
ME ME ME <
o (OOE8 o |DOOog o [ODOog @»
= (B00E | |2 |200E | |« 2808 | =
m oaan M aaan w aann w
L oooe | L_loood | L oooa | L
[________).I________)[________)}_
e= | FYEeEs | Fio== F
& (mamE | | & |(EeEe | | S |EEEE | |5
[]} o (IOEE [| []})
> EoE | |2 (Eoee | | 2 [EEEs | |2
~ |DEEE ~ | IEEE ~ |QEEE <+
L1 [L L1
i — == <—
= (D000 = |DOog s |O00o s (B
ME ME ME <
v (OOo8 o |DOog o [DOOog @»
= |5E0E | |« |200E | |« 28088 | =
m oaan M anan w aaan w
L oooe | L loood | L oooa | L
[________).I________)[________)}_
e | Fiiees | Fio== T
& mamE | | & |(Eeee | | S |EEEE | |5
o |IEEE o (IEEE [| []})
3 = = =
L1 L1 LI L1
e s == S
= |Dooo = |DOog s |B000 s (B
ME ME ME <
o ([OOo8 o |DOOog o [DOOg @?
= |BE0E | |2 |200E | |« 2808 | =
m oaan M aaan w aaan w
L oooe | L_loood | L_/oooa | L
‘/[________).I________)[________)}_
e | FYEEEs | Fie== T
& mamE | | & |(Eeee | | S |EEea | |5
[[[} o ([DOEE o |DEEE)
3 = = =
L1 L1 LI L1
3 3 3
o o ¢
=) @) o
g g g
= = =4
£ e =
O O O
<+ < <+

This is a block diagram of that highlighted area. Each pink rectangle is a piece of memory, and each gold square is a RISC-V CPU core. The black network then connects

it all together.

> 1093 RISC-V cores (RV64IMFC plus extensions)

> Minus 5 special cores (4 maxions, 1 service processor)
> Minus 32 cores for consistent yield purposes (*)

> Minus 32 cores for default firmware (*)

> Leaves us with 1024 “wminion” cores to play with

If you were to count them all, you’d find 1093 gold squares, each of them a RISC-V core.

Five of them are special, so I’m ignoring those.
32 might be lost at the altar of silicon yield, so I’'m ignoring those too.
Another handful are used for running the default firmware; to keep things simple, I'll say the firmware takes 32.

> Software stack? On GitHub

> Firmware? On GitHub

> Manvuals? On GitHub

> Ewmulator? On GitHub

> RTL? Hopefully soon on GitHub

As this is FOSDEM, | want to call out the open source credentials here. This QR code takes you to the AlFoundry GitHub, where you’ll find all the software, firmware, and
manuals for this thing, along with a full emulator. I'm told that a bunch of the RTL will also be open-sourced soon, which I’'m looking forward to.

> 1024 “wminion” cores

> At 650 MHz (*)

> With 8 vector lanes per core (custom SIMD not RVV)
> And every FMA instruction is two fp32 operations

> .. 80 10.6 TFLOP/s of fp32 in theory?

I’ve got these thousand cores, and I’'m choosing to run them at a fixed clock rate for reproducibility. At my chosen fixed clock, the math says we should have just over 10

teraflops of fp32 compute.

How to draw an owl

1. Praw sowe circles 2. Praw the rest of the owl

Some of you will have seen this meme before, which is the how to draw the owl meme: first draw some circles, then draw the rest of the owl. The joke of course being
that step 2 is a massively more work than step 1.

How to draw an owl in the age of Al

1. Draw sowe cireles

2. Use imgZ2img diffusion model

As we’re in the Al devroom, we can use Al for step 2.

How to create a tensor library (PyTorch, GGML, tinygrad, etc)

1. Figure out matwmuls 2. Figure out the rest of the library

But as this is the Al _plumbers_ devroom, we’re implementing Al rather than just using it. Our equivalent of drawing an owl is creating a tensor library, and step 1 of that
is figuring out matmuls. I’ve only got a 20 minute slot here, so I’'m just drawing some circles; it’s massively more work to create a proper library.

struct matrix { fp32 x[512][512]; };

void matmul(matrix* a, matrix* b, matrix* c) {
for Cint 1 =0; 1 < 512" +#1)f
fiornll(int|] = 10; | <[512; #+3)
fp32 x = 0;
for (int k = 0; k < 512; ++k) {
X += a->x[1][k] * b->x[k][3]];
¥
c->x[1][3] = x;
i
¥
Is

To stay within time, I’ll assume that a matrix is always 512 by 512 at fp32 precision - anything else is drawing the rest of the owl. The code here will multiply matrix a by
matrix b, and write the result to ¢, but is the worst performing matmul you’ll ever see.

/ MFLOP/s

.. only 1% wiillion times slower than my 10.6 TFLOP/s goal

If I run that code on my ET-SoC-1, it runs at an appalling 7 megaflops per second, which is more than a million times slower than my 10 teraflop goal. Like | said, worst
performing matmul you’ll ever see, but I’ve got 17 minutes to go, which is surely enough time to make it a million times faster.

Act 1: Going Parallel

[Time guide: T+4mO00s]
Like all good plays, I’m going to work toward my goal over three main acts. Act 1 I've titled “Going Parallel”.

mhartid is threadIdx

and blockIdx
(mostly)

If you’ve written any CUDA code, you’ll have seen threadldx and blockldx: the CUDA model is that you run thousands of copies of your code in parallel, with each copy
having a distinct threadldx / blockldx. I’'m using a similar setup here: all the code I’'m showing you gets run 2048 times in parallel, each with a distinct value of mhartid
between 0 and 2047. If you’re paying attention, you’ll remember | said 1024 cores, but 2048 different mhartid values: the hardware effectively has two-way
hyperthreading with two harts per core.

int 1 = csr_read(mhartid);
Bl <5120+
fiogCint (5ii=1031 jlil< 512 ++7) f
fip32 x = 0;
for (int k = 0; k < 512; ++k) {
x += a->x[1][k] * b->x[k][j];
b
c>x[1]1[3] = x;
ks
ks

int j = csr_read(mhartid);
for-fCint =0T = SiZ = FFi =i
LfCy L I5TA) &
fp32 x = 0;
for (int k = @; k < 512; ++k) {
x += a->x[1][k] * b->x[k][j];
I
c>x[1][3] = x;
i
3

To start out, | can use mhartid to parallelise just one of the loops, either the outer loop (left) or the inner loop (right).

int 1 = csr_read(mhartid);
Bl <5120+
fiogCint (5ii=1031 jlil< 512 ++7) f
fip32 x = 0;
for (int k = 0; k < 512; ++k) {
x += a->x[1][k] * b->x[k][j];
b
c>x[1]1[3] = x;
ks
ks

int
for

j = csr_read(mhartid);
(int 1 =07 1 <5125 ++i) {

if (§ < 512) {

}
}

fp32 x = 0;

for (int k = @; k < 512; ++k) {
x += a->x[1][k] * b->x[k][j];

I

c->x[1]1[3] = x;

Unfortunately, if | parallelise the inner loop, the code gives the wrong result.

LOI$ L11$
21 4:1
256x 1K | 21| 128x 32K | &L
4:11 L2$% L3$ DRAM
NoC NoC
L 32:1|32x oM * |l 1X32M * |yl 32G
or
64:1
Per-Hart 1:1 1 L1D$
. or
Register | .1 1024 | 12
Files <> <€« 1024x 4K |32:1
Cores or 62r1 L2Scp
: * Default partitioning
1 2048x 2K | =]
2048x 174K X7 32x 21HM * of shared SRAM pool
NoC
>

Up to 2465 caches, and no coherency between them

The reason for this lies in the memory hierarchy, which I’'ve tried to show on this block diagram. We’ll come back to this diagram later, so for now there’s just one thing |
want you to take from it: there are a _lot_ of caches on this chip, and there is no coherency between any of them. If you’re coming from a GPU background, this’ll be
familiar to you, whereas if you’re coming from a CPU background, it might be somewhat alarming.

< —
In hart #3s L1D$: 64 byte cache line

I R T I T O O B o S A I T T P I S T
In hart #4’s L1D$:

oo oot | o e 5 [[[[[[[[[0w [0]

What we eventually want in their upstream L2$:

Dt | s b Bl B |t | B | o | W | % | | e | s | e | % |
But if hart #3 flushes first, L2$ ends up with:
B T T T S A e O T A T T P I P P T

Then hart #4 flushes to L2$, totally overwriting it:

‘ 216 ‘ 217 ‘ 218 ‘ 219 ‘C[i][4]‘ 01 ‘ 222 ‘ 23 ‘ 24 ‘ 225 ‘ 226 ‘ %7 ‘ 228 ‘ 29 ‘ 230 ‘ 31 ‘

To see why lack of coherency is a problem, we need to talk about cache lines. On this chip, cache lines are 64 bytes wide, meaning that when caches talk to each other,
they do so in units of 64 bytes. If we think about just hart #3 and hart #4 when they write to the ¢ matrix, they each perform a 4-byte write to their local L1D$, but the
L1D$s have no awareness of each other, and then (at some point later) they’ll each flush the entire 64 byte line to L2$ rather than only the modified part, so the 2nd flush
completely overwrites the 1st flush.

Custom “L” memory

instructions —h
/ 12§ L3$

32X 1M * |yl Tx 32M *

Standard RISC-V Lipg €L
1024 | memory instructions -

< »| 1024x 4K
Cores 1o:J o L2Scp
52 2048x 12K | =3
32x 272M *
NoC

Custom “G”
memory instructions

Thankfully, software can choose which cache to use on an instruction-by-instruction basis. Standard RISC-V memory instructions go to the core-local or hart-local L1D$,
whereas custom “L” instructions to go the L2$ nearest the issuing core. Custom “G” instructions look more complex, but their effect is easy to understand: if you use
them for everything, you’ll have the appearance of coherency, as the cache will be chosen based on the memory address and not the issuing core, but this does come at

a latency and bandwidth cost. I'm using a standard RISC-V compiler meant for CPUs, so memory accesses use standard RISC-V instructions by default, and thus go to
L1D$.

int 1 = csr_read(mhartid);
Bl <5120+
fiogCint (5ii=1031 jlil< 512 ++7) f
fip32 x = 0;
for (int k = 0; k < 512; ++k) {
x += a->x[1][k] * b->x[k][j];
b
c>x[1]1[3] = x;
ks
ks

int j = csr_read(mhartid);
for (int 1 = 0; i < 512; ++1) {
LfLCT L 15120 &
fp32 x = 0;
for (int k = 0; k < 512; ++k) {
x += a->x[1][k] * b->x[k][3j];

b
/) e->xi it =%
store_1(Cc->x[1]1[3], X);

| could fix things by using custom “G” instructions, but the particular access pattern means that “L” instructions also work in this case, which is what I've gone with. If |
was using a compiler which understood the hardware more, perhaps every pointer type would indicate what kind of instruction to use, but I’'m not using a clever enough
compiler.

3.4 GFLOP/s

.. 3 thousand times slower than my goal

Both versions of the code now give the correct result, and the faster of the two runs at 3.4 gigaflops.

int id = csr_read(mhartid);
int i1 =1d / 4;

int jN = 128;
int jo = (id % 4) * jN;
for-Cint—j- =

305-3-<—30 +3IN;—++P 4
fp32 x = 0;
for (int k = 0; k < 512; ++k) {
X += a->x[1][k] * b->x[k][7];
I
c->x[1][]] = x;
¥

The next easy win is to use all 2048 harts rather than just the first 512. The outer i loop is fully parallelised, and then each hart runs one quarter of the inner j loop. The
changed code is in the pink rectangle; everything else is as before.

13.1T GFLOP/s

.. 309 times slower than my goal

Using four times as many harts gives roughly a 4x speedup, putting me at 13.1 gigaflops.

int id = csr_read(mhartid);
int i1 =1d / 4;
int jN = 128;
int jO = (id % 4) * jN;
for (int j = jO; j < j@ + jN; |7 += 8)| {
fp32x8 x = BCAST(0);
for (int k = 0; k < 512; ++k) {
x += BCAST(Ca->x[1][k]) * LD8(b->x[k][3j1);
I
ST8(Cc->x[1][31, x);

The final easy win is using all eight vector lanes. I’'m going to pretend that the C compiler is a little bit better than it actually is, and that doing 8-wide SIMD just requires
changing fp32 to fp32x8. Pending that compiler work, I’'m assembling this code by hand (but if any LLVM hackers want a little project, please make this slide possible).

104 GFLOP/s

.. 102 times slower than my goal

Using all eight vector lanes gives a factor 8 speedup, breaking through the 100 gigaflops barrier.

[Time guide: T+8m30s]

Act 2: Being Clever

LOI$ L11$
2:1 4:1
256x 1K | 21| 128x 32K | &L
4:11 L2$ L3$ DRAM
NoC NoC
- 32:1|32x 1oM * |qp] Tx 32M * |3l 32G
or
64:1
Per-Hart HE L0 |
. or
Register | .1 1024 | 12
Files <> <€« 1024x 4K |32:1
Cores or L2Scp
or 64:1
2048x 14K 2048x 72K | =] : .
e 32x 212M * Default partitioning
(i) of shared SRAM pool

This is the memory hierarchy diagram from before. There’s a star on the capacities of L2$, L3$, and L2Scp, because there’s a single pool of SRAM backing all three, with
configurable partitioning, and the capacities shown here are the default split. Of the three, L2Scp is really interesting, as any SRAM assigned to it behaves like plain
addressable memory rather than like cache, but with the same latency as L2$. Every core will have a nearest L2Scp just like it has a nearest L2$, but any core can access
any L2Scp, it’ll just be higher latency (I’'m not making use of that particular functionality, but it is nice to have).

Up until now I've put the input a and b matrices in DRAM, but | can instead put them in every L2Scp. A proper implementation would need to intelligently stream data into
L2Scp just in time, but I’'m drawing circles rather than complete owls, so | can pre-position the data into every L2Scp and call it good.

312 GFLOP/s

.. 34 times slower than my goal

Reading from L2Scp gives a 3x speedup, so we’re now at 312 gigaflops.

int id = csr_read(mhartid);
int i1 =1d / 4;
int jN = 128;
int jO = (id % 4) * jN;
for (int j = jO; J < jO + JN; ++3) {
fp32 x = 0;
for (int k = 0; k < 512; ++k) {
X += a->x[1][k] * b->x[k][7];
i
c->x[1][]] = x;

At this point | want to look at the inner loop of the matmul in detail, and to keep things simple, I’'m going backwards one step to the pre-SIMD code.

k_loop:

flw f1, o(tl) # Load a[1][k]
flw f2, 0(t2) # Load b[k][j]
addi til, tl, 4 # ++k on a ptr
fsgnpcs—f3, 112

add 12 at2 =43 # ++k on b ptr
fmadd.s f0, f1, f2, fO0 # += and *

bne tl, t0, k_loop # k < 5127

This is the RISC-V assembly corresponding to that loop, with comments added for the benefit of anyone whose first language is not assembly.

k_loop:

flw f1, o(tl) # Load a[1i][k]
flw f2, 0(t2) # Load b[k][7]
addi til, tl, 4 # ++k on a ptr
fsgnpcs—f3, 112

add 12 at2 =43 # ++k on b ptr
fmadd.s f0, f1, f2, fO0 # += and *

bne tl, t0, k_loop # k < 5127

If you’ve got a keen eye for RISC-V assembly, the highlighted instruction will stand out as coming out of nowhere and being seemingly useless, but it is actually present
to work around a hardware bug. The PCle board I’m playing with is AO silicon, and any hardware people in the room will likely acknowledge that A0 silicon always has
some bugs in it, which can require software workarounds. For any software people in the room, AO silicon is like version 0 of a piece of software. It’s the first version you
send to (say) TSMC for printing, and you hope it’ll be bug free, but there are always surprises.

int id = csr_read(mhartid);
int i1 =1d / 4;
int jN = 128;
int jO = (id % 4) * jN;
for (int j = jO; j < jO + jN; j += 8) {
fp32x8 x = BCAST(0);
for (int k = 0; k < 512; ++k) {
X += BCAST(a->x[1][k]) * LD8(b->x[k]1[]j1);
i
ST8(c->x[1]1[J]1, x);
¥

Now that you’ve got over the assembly shock, | can return to the SIMD version of the code. Again, this inner loop is the interesting part.

k_loop:

aif.fbc.ps f1, o(tl) # BCAST a[1][k]
aif.flw.ps fz2, 0(t2) # LD8 b[kI[j]
addi tl, ti1, 4 # ++k on a ptr
aif.fsgnjx.ps f3, fl, f2

add 2t ot3 # ++k on b ptr
aif.fmadd.ps f0, fl1, f2, f@ # += and *

bne tl-t0,icltoop# k=512

This is the assembly for the SIMD version. It’s very similar to the previous assembly, just using custom ps instructions rather than standard ones.

> 14.37% FMAs

» 28.9% Loads

> 9727 Other

Regardless of which version we look at, only 14% of instructions are FMAs. Percentages don’t tell the whole story, but it’s fairly clear that the FMA percentage is too low
and the other percentage is too high. One way of fixing this is to do more work per outer loop iteration. Four times as much work is a sweet spot: rather than computing a
1x8 piece of ¢, double up on both axes to compute a 2x16 piece of c.

int id = csr_read(mhartid); 2=
gntilil="1Cidi/ 8) * |2 fp32x8 b0@ = LD8(b->x[k+@][j+0]1);
thtgN-—64; fp32x8 b@1 = LD8(b->x[k+@][j+81);
int j@ = I(id % 8) * JN; fp32x8 bl@ = LD8(b->x[k+1][j+0]1);
for (int j = jO; j < jO + jN; j += 16){ fp32x8 bll = LD8(b->x[k+1][j+81);
fp32x8 x00 = BCAST(Q); X00 = x00 + a0 * b0d + a0l * bl0;
fp32x8 x@1 = BCAST(@); x01 = x01 + a0 * b@1l + a0l * bll;
fp32x8 x1@ = BCAST(@); x10 = x10 + al@ * b0 + all * bl0;
fp32x8 x11 = BCAST(@); x11 = x11 + al@ * b0l + all * bl1l;
foriCint k=05 k €512 k+=2) { }
fp32x8 a@d = BCAST(a->x[1+@][k+@]1);{ ST8(c->x[1+0]1[j+0], x00);
fp32x8 a@l = BCAST(a->x[1+@][k+1]1);} ST8(c->x[1+0]1[j+8], x01);
fp32x8 al® = BCAST(a->x[1+1][k+@]1);{ ST8(c->x[1+1]1[j+0], x10);
fp32x8 all = BCAST(a->x[1i+1][k+1]1);{ ST8(c->x[i+1]1[j+8], x11);
i

The code now looks like this. It is doing four times as much work per outer loop iteration, and you can clearly see that: four lines to initialise x variables, four BCAST loads
from a, four LD8 loads from b, four lines of FMAs, and four ST8 stores to c.

> 1437 FMAs » 327 FMAs

> 28.9% Loads > 327% Loads

> 972% O0ther > 3%67%Z Other

This change has the desired effect on the percentages: FMAs are up, and the “other” percentage is down.

1.64 TFLOP/s

... 6% times slower than wmy goal

Also a huge effect in performance, breaking through the teraflop barrier.

> 14372 FMAs » 3272 FMAs » 62.8% FMAs

> 28.9% Loads > 3%2%loads > 3%147% loads

> 972% Other > 36% Other > 9.8% Other

We can pull the same trick again, with another factor four work per outer loop iteration. I’'m not going to show the code for this, as 2x16 only just fitted on one slide, and
4x32 is four times longer. | can show the percentages though; as before, FMAs are up, and the percentage of “other” is down.

294 IE|OP/s

.. 3.6 times slower than my goal

At this point, performance is just shy of 3 teraflops, which is nice, but I’'m still aiming for more than 10.

> 14372 FMAs > 3272 FMAs » 62.8% FMAs » 1007 FMAs

» 28.9% Lloads > 327 loads > 314%Z loads > 207 Loads

> 9727 Other > 36% Other > 9.8% Other = 5% Other

To get to 10 teraflops, I'd like to push the percentage of FMAs all the way to 100%. Of course, there still need to be some loads and some other instructions, which for
sake of argument I’m going to ballpark at 20% and 5%. This adds up to 125%, which you might think is impossible, but it just requires creative thinking. To hit 125%, we
need to execute 1.25 instructions per cycle on average, which means (at least sometimes) executing more than one instruction per cycle.

[Time guide: T+13m30s]

Act 3: Magic Hardware

256x 128x 32x 1x

LOI$ L1I$
: —
Hart 1 Hart 0 :1 024x
GPRs GPRs - [2F | ¢— 13
32x 64b || 32x 64b
| |
Hart 0 Scalar Unit
Frontend 64x 512b
ngé 1 8-lane Vector Unit = L2Scp
I I
Hart 1 Hart O
Vectors Vectors
32x 256b|[32x 256b

This is another diagram trying to show you the ET-SoC-1. The main region in the bottom left is showing a single minion CPU core, and as a reminder I’'m playing with
1024 such cores. On this diagram I’m showing the scalar unit and the vector unit as separate pieces of hardware, so you might think that we can achieve two instructions

per cycle by having one hart issue a scalar instruction and the other hart issue a vector instruction, but that doesn’t actually work, as the frontend is only capable of one
RISC-V instruction per cycle. There is however additional magic hardware which I’ve not yet used...

256x 128x 32x 1x
LOIS L11$
: —
Hart 1 Hart O 7] 024.)(
GPRs GPRs Hart 0 - [12F | q— 35
32x 64b || 32x 64b L1D$
| | 8x 512b
Hart 0 Scalar Unit | £)
pc RISC-V Calar uni Hart;
L1D
Frontend
Hgg L 8-lane Vector Unit 8x 512b 1 = L25¢p
| | = Tensor —
Hart 1 Hart O Tensor L1Scp Tensor Tensor
Vectors || Vectors Compute | [48x 512b L1 Load L2 Load
32x 256b|[32x 256b
arpal B

Same diagram, but now with the tensor hardware on it, shown as these additional green boxes. They’re green because, like the RISC-V Frontend, they can each issue
one instruction per cycle. Starting on the very right, all that Tensor L2 Load can do is load data into L2Scp. A proper implementation would use this to stream data into
L2Scp, but I'm not drawing complete owls, so I'm not using it at all. Moving left, Tensor L1 Load is again only capable of loading data, but the destination of those loads
is kind of interesting: most of the L1D$ is repurposed into a register file for holding Tensor L1 Load results, and then for loads which are used exactly once, there's a
direct path from Tensor L1 Load to Tensor Compute. Those direct loads are are called B-type, whereas loads to L1Scp are called A-type, and I've put A and B labels on
the diagram. Moving left again, the Tensor Compute box is what we're all really here for. Depending on how you count it, there are about ten different things this box can
do, one of which is fp32 matmul accumulate with matrix shape 16x16. Relevant for me is that Tensor Compute can use the Vector Unit for doing the computation in
parallel with the RISC-V Frontend using the Scalar Unit. You'll note that I've put a "C" label on the arrow linking Tensor Compute to hart 0's vector registers, and that all
my matmul functions up until now have been computing C equals A times B, so hopefully you can guess where I'm going with this, which is that Tensor Compute can
take an A-type load, multiply it with a B-type load, and accumulate the result C onto hart 0's vector registers.

These Tensor boxes don’t have any pc or I$ wired up to them. Instead, the RISC-V frontend can spend a single scalar instruction to enqueue up to 512 instructions to
Tensor Compute or up to 1 KiB of loads to either Tensor L1 or L2 Load. In any event, the enqueued instructions proceed asynchronously.

int id = csr_read(mhartid);
if (id & 1) return;

it = - CCid 420 /1 3P L% 16
iRt e (Cid /2D % 32) | * 16;

The code for using the tensor hardware isn’t going to fit on one slide, so I'll show it over three slides. This is slide one of three, doing the usual mhartid stuff. The
interesting part is that Tensor Compute and Tensor L1 Load can only be used by hart 0 of each core, so I’'m making hart 1 return immediately. In a proper implementation,
hart 1 would be prefetching data with Tensor L2 Load instructions, but I’'m not drawing complete owls.

register u64 stride __asm("x31") = offsetof(matrix, x[1][0]1);
for (int k = 0; k < 512; k += 16) {
__asm volatile(
"csrw aif.tensor_load, %[load_a_cmd]\n"
"csrw aif.tensor_load, %[load_b_cmd]\n"
"csrwi aif.tensor_wait, %[wait_a_cmd]\n"
"csrw aif.tensor_fma, %[fma_cmd]\n"
"csrwi aif.tensor_wait, %[wait_fma_cmd]\n"
: "+r" (stride)
: [load_a_ecmd] "r" (15 | Cuintptr_t)&a->x[1i][k])
, [load_b_cmd] "r" (CClull << 52) | 15 | Cuintptr_t)&b->x[k]1[j]1)
, [wait_a_cmd] "K" (@)
, [fma_cmd] "r" (QBull << 55) | (15ull << 51) | (15ull << 47)
| C 1ull << 20) | (k == 0))
, [wait_fma_cmd] "K" (7)
Shiimemory iR EQ, k F 30 3
Dis

Then we get the main loop. There isn’t yet nice syntax for making use of the tensor hardware, so I've got inline RISC-V assembly in my C code, with the inline assembly
containing all sorts of magic numbers to encode tensor instructions. The first two lines of assembly enqueue an A-type and a B-type load, the next line stalls the RISC-V
frontend until the A-type load has completed, the next line enqueues 512 FMA instructions to Tensor Compute, and the final line again stalls the RISC-V frontend until
those instructions are complete. If you want to understand this code, the hardware manual is on GitHub. For everyone else, just take my word that it works.

__asm volatile(
"csrw aif.tensor_store, %[store_cmd]\n"
"+r" (stride)
[store_cmd] "r" ((3ull << 55) | (15ull << 51)
| Cuintptr_t)&c->x[1][7])
=memony:, ="t 'f1") N30, 310
DK

The third slide of code is pretty short, just instructing the Tensor Compute unit to perform a store of C to memory.

/.05 TFLOP/s

... $till 0% slower than my goal

If I run the code from the previous three slides, it performs at just over 7 teraflops per second.

I’m not going to claim that the code is easy to read, but performance is not always pretty.

Calculate i/j Calculate i/j Calculate i/3j
Tensor Load A Tensor Load A
Tensor Load A
Tensor FMA Tensor FMA Tensor FMA, Tensor Load A
Tensor Load A

Tensor Load A
Tensor FMA Tensor FMA Tensor FMA, Tensor Load A
Tensor Load A

Tensor Load A

Tensor FMA
Tensor FMA Tensor FMA, Tensor Load A
Tensor Load A Tensor Load A
Tensor FMA
Tensor FMA Tensor FMA
Tensor Store Tensor Store Tensor Store

I’m still a bit short of my goal, but I’ve got one more trick to go. The code | just showed you is the left-hand column here: calculate i/j, then a repeating loop of {A-type
load, wait, FMA, wait}, then a store after the loop. | can re-arrange it a little bit as shown in the middle column: peel off the first A-type load and peel off the final FMA, and
then the repeating loop changes to have the FMA before the A-type load. This is a very useful change, as now within each loop iteration, the FMA doesn’t depend on the
load nor does the load depend on the FMA, so they can be done in parallel, as shown in the right-hand column.

int id = csr_read(mhartid);
if (id & 1) return;
int i = ((id / 2) / 32) * 16;
int j = ((id /7 2) % 32) * 16;
register u64 stride __asm("x31") = offsetof(matrix, x[1][0]);
int k = 0;
u64 fma_cmd = (3ull << 55) | (15ull << 51) | (15ull << 47)
[C 1ull << 20) | 1;
__asm volatile(
"csrw aif.tensor_load, %[load_a_cmd]\n"
: "+r" (stride)
: [load_a_cmd] "r" (15 | (fma_cmd << 49) | (uintptr_t)&a->x[1][k])
dilimemo Ry @ ST S R30S 3

D;

The code for the right-hand column is again three slides. We start with the same mhartid logic as before, and then the first A-type load.

for (; k < 496; k += 16) {

ub4 next_fma_cmd = fma_cmd A 0x100;

__asm volatile(
"csrw aif.tensor_load, %[load_b_cmd]\n"
"csrwi aif.tensor_wait, %[wait_a_cmd]\n"
"csrw aif.tensor_fma, %[fma_cmd]\n"
"csrw aif.tensor_load, %[load_a_cmd]\n"
: "+r" (stride)

: [Toad_b_cmd] "r" ((1ull << 52) | 15 | Cuintptr_t)&b->x[k]I[j1D
, [wait_a_cmd] "K" (@)
, [fma_cmd] “r" (fma_cmd)

, [load_a_cmd] "r" ((next_fma_cmd << 49) | 15 | Cuintptr_t)&a->x[i][k+16])
: llmemory") mn F@" . " _Flll 1 Ll n _F30ll | mn 'F31"

bH

fma_cmd = next_fma_cmd & ~1ull;

}

The main loop now has the FMA before the A-type load, and as they can execute in parallel, there’s one less wait instruction.

);

__asm volatile(

"csrw aif.tensor_load, %[load_b_cmd]\n"
"csrwi aif.tensor_wait, %[wait_a_cmd]\n"
"csrw aif.tensor_fma, %[fma_cmd]\n"

"csrw aif.tensor_store, %[store_cmd]\n"

: "+r" (stride)

: [Toad_b_cmd] "r" (Clull << 52) | 15 | Cuintptr_t)&b->x[k][j]1)

, [wait_a_cmd] "K" (@)

, [fma_cmd] "r" (fma_cmd)

, [store_cmd] "r" (CQ3ull << 55) | (15ull << 51) | Cuintptr_t)&c->x[i][3]1)
SEmemoRyil,s L0t R 30N 3T

The code after the loop contains the final FMA and then the store.

10.25 TFLOP/s

Again, | don’t honestly expect anyone in the room to fully comprehend three slides of fairly cryptic code, but if you are interested in the details you can download the slide
deck and cross-reference with the hardware manual. What | would like you to take away is that the code works, and gets the hardware running at above 10 teraflops,

which is within a few percent of the theoretical maximum. I’'m going to declare that as goal accomplished. As I’'m pretty much out of time, someone else can draw the rest
of the owl.

