
Zero to matmul with the ET-SoC-1
FOSDEM 2026, AI Plumbers devroom

Zero to matmul with the ET-SoC-1
FOSDEM 2026, AI Plumbers devroom

4 GiB LPDDR4x

4 GiB LPDDR4x

4 GiB LPDDR4x

4 GiB LPDDR4x

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

PCIe Gen4 x8

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 MiB SRAM

4 GiB LPDDR4x

4 GiB LPDDR4x

4 GiB LPDDR4x

4 GiB LPDDR4x

1093 RISC-V cores (RV64IMFC plus extensions)

Minus 5 special cores (4 maxions, 1 service processor)

Minus 32 cores for consistent yield purposes (*)

Minus 32 cores for default firmware (*)

Leaves us with 1024 “minion” cores to play with

Software stack? On GitHub

Firmware? On GitHub

Manuals? On GitHub

Emulator? On GitHub

RTL? Hopefully soon on GitHub

1024 “minion” cores

At 650 MHz (*)

With 8 vector lanes per core (custom SIMD, not RVV)

And every FMA instruction is two fp32 operations

… so 10.6 TFLOP/s of fp32 in theory?

How to draw an owl

2. Draw the rest of the owl1. Draw some circles

How to draw an owl in the age of AI

2. Use img2img diffusion model1. Draw some circles

How to create a tensor library (PyTorch, GGML, tinygrad, etc)

2. Figure out the rest of the library1. Figure out matmuls

struct matrix { fp32 x[512][512]; };

void matmul(matrix* a, matrix* b, matrix* c) {
 for (int i = 0; i < 512; ++i) {
 for (int j = 0; j < 512; ++j) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 c->x[i][j] = x;
 }
 }
}

7 MFLOP/s
… only 1½ million times slower than my 10.6 TFLOP/s goal

Act 1: Going Parallel

mhartid is threadIdx
and blockIdx

(mostly)

 int i = csr_read(mhartid);
 if (i < 512) {
 for (int j = 0; j < 512; ++j) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 c->x[i][j] = x;
 }
 }

 int j = csr_read(mhartid);
 for (int i = 0; i < 512; ++i) {
 if (j < 512) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 c->x[i][j] = x;
 }
 }

void matmul(matrix* a, matrix* b, matrix* c) { void matmul(matrix* a, matrix* b, matrix* c) {

} }

 int i = csr_read(mhartid);
 if (i < 512) {
 for (int j = 0; j < 512; ++j) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 c->x[i][j] = x;
 }
 }

 int j = csr_read(mhartid);
 for (int i = 0; i < 512; ++i) {
 if (j < 512) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 c->x[i][j] = x;
 }
 }

Correct result Wrong result
Eh?

Per-Hart
Register

Files

2048x 1¼K

1024
Cores

L1D$

1024x 4K
or

2048x ½K

L2$
32x ½M *

L2Scp

32x 2½M *

L3$
1x 32M *

DRAM
32G

NoC
32:1
or

64:1

NoC

NoC

2:1

1:1
or
1:2

32:1
or

64:1

L1I$
128x 32K

L0I$
256x 1K

Up to 2465 caches, and no coherency between them

4:12:1

4:1

* Default partitioning
of shared SRAM pool

?0 ?1 ?2 c[i][3] ?4 ?5 ?6 ?7 ?8 ?9 ?10 ?11 ?12 ?13 ?14 ?15

64 byte cache line
In hart #3’s L1D$:

?16 ?17 ?18 ?19 c[i][4] ?21 ?22 ?23 ?24 ?25 ?26 ?27 ?28 ?29 ?30 ?31

In hart #4’s L1D$:

What we eventually want in their upstream L2$:
?32 ?33 ?34 c[i][3] c[i][4] ?37 ?38 ?39 ?40 ?41 ?42 ?43 ?44 ?45 ?46 ?47

But if hart #3 flushes first, L2$ ends up with:

Then hart #4 flushes to L2$, totally overwriting it:

?0 ?1 ?2 c[i][3] ?4 ?5 ?6 ?7 ?8 ?9 ?10 ?11 ?12 ?13 ?14 ?15

?16 ?17 ?18 ?19 c[i][4] ?21 ?22 ?23 ?24 ?25 ?26 ?27 ?28 ?29 ?30 ?31

Standard RISC-V
memory instructions

Custom “L” memory
instructions

Custom “G”
memory instructions

L1D$

1024x 4K
or

2048x ½K

L2$
32x ½M *

L2Scp

32x 2½M *

L3$
1x 32M *

1024
Cores

32:1

NoC

1:1
or
1:2

 int i = csr_read(mhartid);
 if (i < 512) {
 for (int j = 0; j < 512; ++j) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 c->x[i][j] = x;
 }
 }

 int j = csr_read(mhartid);
 for (int i = 0; i < 512; ++i) {
 if (j < 512) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 // c->x[i][j] = x;
 store_l(c->x[i][j], x);
 }
 }

Correct result Correct result

3.4 GFLOP/s
… 3 thousand times slower than my goal

 int id = csr_read(mhartid);
 int i = id / 4;
 int jN = 128;
 int j0 = (id % 4) * jN;
 for (int j = j0; j < j0 + jN; ++j) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 c->x[i][j] = x;
 }

13.1 GFLOP/s
… 809 times slower than my goal

 int id = csr_read(mhartid);
 int i = id / 4;
 int jN = 128;
 int j0 = (id % 4) * jN;
 for (int j = j0; j < j0 + jN; j += 8) {
 fp32x8 x = BCAST(0);
 for (int k = 0; k < 512; ++k) {
 x += BCAST(a->x[i][k]) * LD8(b->x[k][j]);
 }
 ST8(c->x[i][j], x);
 }

104 GFLOP/s
… 102 times slower than my goal

Act 2: Being Clever

Per-Hart
Register

Files

2048x 1¼K

1024
Cores

L1D$

1024x 4K
or

2048x ½K

L2$
32x ½M *

L2Scp

32x 2½M *

L3$
1x 32M *

DRAM
32G

NoC
32:1
or

64:1

NoC

NoC

2:1

1:1
or
1:2

32:1
or

64:1

L1I$
128x 32K

L0I$
256x 1K 4:12:1

4:1

* Default partitioning
of shared SRAM pool

312 GFLOP/s
… 34 times slower than my goal

 int id = csr_read(mhartid);
 int i = id / 4;
 int jN = 128;
 int j0 = (id % 4) * jN;
 for (int j = j0; j < j0 + jN; ++j) {
 fp32 x = 0;
 for (int k = 0; k < 512; ++k) {
 x += a->x[i][k] * b->x[k][j];
 }
 c->x[i][j] = x;
 }

k_loop:
 flw f1, 0(t1) # Load a[i][k]
 flw f2, 0(t2) # Load b[k][j]
 addi t1, t1, 4 # ++k on a ptr
 fsgnjx.s f3, f1, f2
 add t2, t2, t3 # ++k on b ptr
 fmadd.s f0, f1, f2, f0 # += and *
 bne t1, t0, k_loop # k < 512?

k_loop:
 flw f1, 0(t1) # Load a[i][k]
 flw f2, 0(t2) # Load b[k][j]
 addi t1, t1, 4 # ++k on a ptr
 fsgnjx.s f3, f1, f2
 add t2, t2, t3 # ++k on b ptr
 fmadd.s f0, f1, f2, f0 # += and *
 bne t1, t0, k_loop # k < 512?

Eh?

 int id = csr_read(mhartid);
 int i = id / 4;
 int jN = 128;
 int j0 = (id % 4) * jN;
 for (int j = j0; j < j0 + jN; j += 8) {
 fp32x8 x = BCAST(0);
 for (int k = 0; k < 512; ++k) {
 x += BCAST(a->x[i][k]) * LD8(b->x[k][j]);
 }
 ST8(c->x[i][j], x);
 }

k_loop:
 aif.fbc.ps f1, 0(t1) # BCAST a[i][k]
 aif.flw.ps f2, 0(t2) # LD8 b[k][j]
 addi t1, t1, 4 # ++k on a ptr
 aif.fsgnjx.ps f3, f1, f2
 add t2, t2, t3 # ++k on b ptr
 aif.fmadd.ps f0, f1, f2, f0 # += and *
 bne t1, t0, k_loop # k < 512?

14.3% FMAs

28.5% Loads

57.2% Other

 int id = csr_read(mhartid);
 int i = (id / 8) * 2;
 int jN = 64;
 int j0 = (id % 8) * jN;
 for (int j = j0; j < j0 + jN; j += 16){
 fp32x8 x00 = BCAST(0);
 fp32x8 x01 = BCAST(0);
 fp32x8 x10 = BCAST(0);
 fp32x8 x11 = BCAST(0);
 for (int k = 0; k < 512; k += 2) {
 fp32x8 a00 = BCAST(a->x[i+0][k+0]);
 fp32x8 a01 = BCAST(a->x[i+0][k+1]);
 fp32x8 a10 = BCAST(a->x[i+1][k+0]);
 fp32x8 a11 = BCAST(a->x[i+1][k+1]);
 …

 …
 fp32x8 b00 = LD8(b->x[k+0][j+0]);
 fp32x8 b01 = LD8(b->x[k+0][j+8]);
 fp32x8 b10 = LD8(b->x[k+1][j+0]);
 fp32x8 b11 = LD8(b->x[k+1][j+8]);
 x00 = x00 + a00 * b00 + a01 * b10;
 x01 = x01 + a00 * b01 + a01 * b11;
 x10 = x10 + a10 * b00 + a11 * b10;
 x11 = x11 + a10 * b01 + a11 * b11;
 }
 ST8(c->x[i+0][j+0], x00);
 ST8(c->x[i+0][j+8], x01);
 ST8(c->x[i+1][j+0], x10);
 ST8(c->x[i+1][j+8], x11);
 }

14.3% FMAs

28.5% Loads

57.2% Other

32% FMAs

32% Loads

36% Other

Was 1x8 Now 2x16

1.64 TFLOP/s
… 6½ times slower than my goal

14.3% FMAs

28.5% Loads

57.2% Other

32% FMAs

32% Loads

36% Other

Was 2x16 Going to 4x32
62.8% FMAs

31.4% Loads

5.8% Other

2.94 TFLOP/s
… 3.6 times slower than my goal

14.3% FMAs

28.5% Loads

57.2% Other

32% FMAs

32% Loads

36% Other

Now 4x32 Somehow?
62.8% FMAs

31.4% Loads

5.8% Other

100% FMAs

20% Loads

5% Other

Act 3: Magic Hardware

1024x

32x 1x128x256x

Hart 0
pc

Hart 1
pc

RISC-V
Frontend

Scalar Unit

8-lane Vector Unit

Hart 0
GPRs

32x 64b

Hart 0
Vectors

32x 256b

Hart 1
GPRs

32x 64b

Hart 1
Vectors

32x 256b

L0 $

L1D$
64x 512b

L1 $

L2$

L2Scp

L3$

I I

1024x

32x 1x128x256x

Hart 0
pc

Hart 1
pc

RISC-V
Frontend

Scalar Unit

8-lane Vector Unit

Hart 0
GPRs

32x 64b

Hart 0
Vectors

32x 256b

Hart 1
GPRs

32x 64b

Hart 1
Vectors

32x 256b

L0 $

Tensor
Compute

Hart 0
L1D$

8x 512b

Hart 1
L1D$

8x 512b

Tensor
L1Scp

48x 512b

L1 $

Tensor
L1 Load

L2$

L2Scp

Tensor
L2 Load

L3$

A BC

I I

 int id = csr_read(mhartid);
 if (id & 1) return;
 int i = ((id / 2) / 32) * 16;
 int j = ((id / 2) % 32) * 16;  
 …

 …  
 register u64 stride __asm("x31") = offsetof(matrix, x[1][0]);  
 for (int k = 0; k < 512; k += 16) {
 __asm volatile(
 "csrw aif.tensor_load, %[load_a_cmd]\n"
 "csrw aif.tensor_load, %[load_b_cmd]\n"
 "csrwi aif.tensor_wait, %[wait_a_cmd]\n"
 "csrw aif.tensor_fma, %[fma_cmd]\n"
 "csrwi aif.tensor_wait, %[wait_fma_cmd]\n"
 : "+r" (stride)
 : [load_a_cmd] "r" (15 | (uintptr_t)&a->x[i][k])
 , [load_b_cmd] "r" ((1ull << 52) | 15 | (uintptr_t)&b->x[k][j])
 , [wait_a_cmd] "K" (0)
 , [fma_cmd] "r" ((3ull << 55) | (15ull << 51) | (15ull << 47)
 | (1ull << 20) | (k == 0))
 , [wait_fma_cmd] "K" (7)
 : "memory", "f0", "f1", … "f30", "f31"
);
 }  
 …

 …
 __asm volatile(
 "csrw aif.tensor_store, %[store_cmd]\n"
 : "+r" (stride)
 : [store_cmd] "r" ((3ull << 55) | (15ull << 51)
 | (uintptr_t)&c->x[i][j])
 : "memory", "f0", "f1", … "f30", "f31"
);

7.05 TFLOP/s
… still 50% slower than my goal

Calculate i/j

Tensor Load A
Tensor FMA

Tensor Load A
Tensor FMA

…

Tensor Load A
Tensor FMA

Tensor Load A
Tensor FMA

Tensor Store

Calculate i/j
Tensor Load A

Tensor FMA
Tensor Load A

Tensor FMA
Tensor Load A

…
 

Tensor FMA
Tensor Load A

Tensor FMA
Tensor Store

Calculate i/j
Tensor Load A

Tensor FMA, Tensor Load A

Tensor FMA, Tensor Load A

…
 

Tensor FMA, Tensor Load A

Tensor FMA
Tensor Store

{

{

{

{

{

{

{

 int id = csr_read(mhartid);
 if (id & 1) return;
 int i = ((id / 2) / 32) * 16;
 int j = ((id / 2) % 32) * 16;
 register u64 stride __asm("x31") = offsetof(matrix, x[1][0]);
 int k = 0;
 u64 fma_cmd = (3ull << 55) | (15ull << 51) | (15ull << 47)
 | (1ull << 20) | 1;
 __asm volatile(
 "csrw aif.tensor_load, %[load_a_cmd]\n"
 : "+r" (stride)
 : [load_a_cmd] "r" (15 | (fma_cmd << 49) | (uintptr_t)&a->x[i][k])
 : "memory", "f0", "f1", … "f30", "f31"
);  
 …

 …  
 for (; k < 496; k += 16) {
 u64 next_fma_cmd = fma_cmd ^ 0x100;
 __asm volatile(
 "csrw aif.tensor_load, %[load_b_cmd]\n"
 "csrwi aif.tensor_wait, %[wait_a_cmd]\n"
 "csrw aif.tensor_fma, %[fma_cmd]\n"
 "csrw aif.tensor_load, %[load_a_cmd]\n"
 : "+r" (stride)
 : [load_b_cmd] "r" ((1ull << 52) | 15 | (uintptr_t)&b->x[k][j])
 , [wait_a_cmd] "K" (0)
 , [fma_cmd] “r" (fma_cmd)
 , [load_a_cmd] "r" ((next_fma_cmd << 49) | 15 | (uintptr_t)&a->x[i][k+16])
 : "memory", "f0", "f1", … "f30", "f31"
);
 fma_cmd = next_fma_cmd & ~1ull;
 }  
 …

 …
 __asm volatile(
 "csrw aif.tensor_load, %[load_b_cmd]\n"
 "csrwi aif.tensor_wait, %[wait_a_cmd]\n"
 "csrw aif.tensor_fma, %[fma_cmd]\n"
 "csrw aif.tensor_store, %[store_cmd]\n"
 : "+r" (stride)
 : [load_b_cmd] "r" ((1ull << 52) | 15 | (uintptr_t)&b->x[k][j])
 , [wait_a_cmd] "K" (0)
 , [fma_cmd] "r" (fma_cmd)
 , [store_cmd] "r" ((3ull << 55) | (15ull << 51) | (uintptr_t)&c->x[i][j])
 : "memory", "f0", "f1", … "f30", "f31"
);

10.25 TFLOP/s
… sufficiently close to my goal

