PythonBPF - Writing eBPF programs
In pure Python

FOSDEM 2026
Pragyansh Chaturvedi, Varun Mallya

31 January 2026

Introduction

- Pragyansh Chaturvedi <r41kOu@ubuntu.com>

- Part of Ubuntu Engineering at Canonical
- Co-maintainer of PythonBPF

- Varun Mallya <varunrmallya@gmail.com>

- Engineering student
- Co-maintainer of PythonBPF

PythonBPF

Introduction

- PythonBPF is a pure Python frontend for writing eBPF programs
- This sounds similar to what you can do with BCC, but is significantly different

AR
qé,@ PythonBPF

What PythonBPF does differently

- Allows a reduced Python grammar for eBPF specific code
- Abstract away typing and verifier-massaging complexities (as best as it can)

X) PythonBPF

PythonBPF and BCC - side by side

define BPF program
prog - nan
#include <linux/sched.h>

// define output data structure in C
struct data_t {
u32 pid;
ué4 ts;
char comm[TASK_COMM_LEN];
}i
BPF_PERF_OUTPUT(events);

int hello(struct pt_regs *ctx) {
struct data_t data = {};

data.pid = bpf_get_current_pid_tgid();
data.ts = bpf_ktime_get_ns();
bpf_get_current_comm(&data.comm, sizeof(data.comm));

events.perf_submit(ctx, &data, sizeof(data));

return O;

}

@bpf
@struct
class data_t:
pid: c_int64
ts: c_int64
comm: str(16) # type: ignore [valid-type]

@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_int64, value_size=c_int64)

@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def hello(ctx: c_void_p) -> c_int64:

dataobj = data_t()

dataobj.pid, dataobj.ts = pid(), ktime()

comm(dataobj.comm)

events.output(dataobj)

return @ # type: ignore [return-value]

ythonBPF

Basic overview of a PythonBPF program

from pythonbpf import bpf, map, struct, section, bpfglobal, BPF
from pythonbpf.helper import ktime, pid, comm

from pythonbpf.maps import PerfEventArray

from ctypes import c_void_p, c_int64

@bpf
@struct
class data_t:
pid: c_int64
ts: c_int64
comm: str(16) # type: ignore [valid-type]

@bpf
@map
def events() -> PerfEventArray:
return PerfEventArray(key_size=c_int64, value_size=c_int64)

@bpf
@section("tracepoint/syscalls/sys_enter_clone")
def hello(ctx: c_void_p) -> c_int64:

dataobj = data_t()

dataobj.pid, dataobj.ts = pid(), ktime()

comm(dataobj.comm)

events.output(dataobj)

return @ # type: ignore [return-value]

1;\%@ PythonBPF

Compilation flow

vmlinux.py generation

bpftool vmlinux c-
header generation

v

clang2py with some
tweaks

v

vmlinux.py with
ctypes

s
jupyter
S’

Python File or
Notebook source

Find bpf chunks

\4
vmlinux import resol

debug info gene
\4

ution and
ration

Struct processing and debug
info generation

\ 4

Map processing and debug info

generation
\ 4

function

: Allocat
processing

ion pass

Y

Y

a Assignment pass
expr processing

HeBPF

Program running
inside the kernel

¢

Access to maps in
userspace

|

Pylibbpf

ic F3E !
—C> BPF object file

&
‘?‘%\Q PythonBPF

A walkthrough - disksnoop

from ctypes import c_int32, c_int64, c_uint64
from vmlinux import struct_pt_regs, struct_request

from pythonbpf import bpf, bpfglobal, compile, map, section
from pythonbpf.helper import ktime
from pythonbpf.maps import HashMap

@bpf
@map
def start() -> HashMap:
return HashMap(key=c_uint64, value=c_uint64, max_entries=10240)

PythonBPF

A walkthrough - disksnoop

@bpf
@section("kprobe/blk_mq_end_request")
def trace_completion(ctx: struct_pt_regs) -> c_int64:
req_ptr = ctx.di
req = struct_request(ctx.di)
data_len = req.__data_len
cmd_flags = req.cmd_flags
req_tsp = start.lookup(req_ptr)
if req_tsp:
delta = ktime() - req_tsp
delta_us = delta // 1000
print(f"{data_len} {cmd_flags:x} {delta_us}\n")
start.delete(req_ptr)

return @ # type: ignore [return-value]

' PythonBPF

A walkthrough - disksnoop

@bpf
@section("kprobe/blk_mg_start_request")
def trace_start(ctxl: struct_pt_regs) -> c_int32:
req = ctx1.di
ts = ktime()
start.update(req, ts)
return © # type: ignore [return-value]

@bpf

@bpfglobal

def LICENSE() -> str:
return "GPL"

compile()

' PythonBPF

Demos and Examples

- These are the video demos: https://youtu.be/eFVhLnWEXtE?t=352 (Highly

recommend!)

- Aninteractive TUI based container monitor

- Syscall anomaly detection for the Spotify snap

- Kernel stack symbolization using blazesym

- BCC’s vfsreadlat example - ported to ipynb, live TUI and interactive live web dashboard

- You can try and tweak the examples yourself at
https://github.com/pythonbpf/Python-BPF#try-it-out

@ PythonBPF

https://youtu.be/eFVhLnWFxtE?t=352
https://github.com/pythonbpf/Python-BPF#try-it-out

The internals

- As seen in previous examples, the @bpf decorator is what signals the

compiler that the enclosed code is to be compiled as BPF code. We call them
BPF chunks

- Then there are specifiers for structs, maps, and global strings.

PythonBPF

The internals - type deduction

- Due to the weakly typed nature of Python, PythonBPF has to employ type
deduction for reliably lowering it to LLVM IR, while hiding this from the user.
We need to see if a data container can be converted to a desired type, and do
a best effort attempt to do it.

- This also introduces complexity in the local variable allocations, where we use
a strategy of calculating the maximum allocations we might need, and the
maximum scratch space (in terms of stack frames) we need for each type.

- We constantly test and improve our type deduction as this is an area most of
our papercuts come from.

AR
%\;@ PythonBPF

The internals - type deduction

@bpf
SEC("kprobe/blk_mq_end request) ; " "
fecelconplebonic £ : @section("kprobe/blk_mg_end_request")
def trace_completion(ctx: struct_pt_regs) -> c_int64:
regp = (__u64)(ctx->di); req_ptr = ctx.di
*ESD;
now_ns;
4 delta_ns; data_len = req.__data_len
delta_us = 0;
cmd_flags = req.cmd_flags
Bpf. printk(*$LLd", reqp): i e
tsp = bpf_map_lookup _elem(&start_map, &reqp); req_tsp = start.lookup(req_ptr)
if (!tsp) if req_tsp:
return 8; delta = ktime() - reg_tsp

req = struct_request(ctx.di)

now_ns = bpf_ktime_get_ns(); delta_us = delta // 1000

delta_ns = now_ns - *tsp; print(f"{data_len} {cmd_flags:x} {delta_us}\n")

delta_us = delta_ns / 1000;
start.delete(req_ptr)

2 data_len = 0;

cnd_flags = 0 return 0 # type: ignore [return-value]

data_len = (__) BPF_CORE_READ((struc t *)reqp, _ data_len);
cmd_flags = () BPF_CORE_READ((struct *)reqp, cmd_flags);

bpf_printk("%u %x %llu\n", data_len, cmd_flags, delta_us);

bpf_map_delete _elem(&start_map, ®p);

The internals - vmlinux.py

- We write BTF info into vmlinux.h using bpftool, then run that through
clang2py (with some tweaks) to get vmlinux.py with the kernel headers
Pythonized.

- Internally, there is a handler that checks which structs and enums from
vmlinux.py are being used in the program being compiled and resolves all the
dependencies required to interface with that struct and generates IR for it as
well.

- Once we get the headers and parse them into the required data structures,
we generate Debug Info and add it to the IR.

- We then inject the parsed data into the symbol table and add handlers to the
required locations where we expect vmlinux elements to be used.

PythonBPF

Ay
o
w0

Where PythonBPF shines

- Users need to be less worried about typing

- Users are shielded from common verifier massaging

- A concise, Pythonic syntax, which allows users to use Python devtools in their
IDE

- Allows using the Python ecosystem — allows for better data analysis and
visualization

- ldeal for beginners and quick prototyping

PythonBPF

AR
& \\’

Next challenges

- PythonBPF is not feature complete (yet)

- For it to be a serious industry choice, it has to support all the language constructs and all
maps, helpers and kfuncs
- One suggestion was to port the kernel selftests — but that seems to be a huge undertaking

- Establishing a feedback loop with our early adopters

- Users whose needs and use cases are very clearly defined, and can give constant feedback
- Grad students?

Our Goals

- Make PythonBPF a prime choice for users to write BPF code
- Due to the choice of language, make BPF accessible to a much wider
audience

AR
qé,@ PythonBPF

Summary

- PythonBPF is a reduced Python grammar for writing BPF programs in pure
Python

- There is active development ongoing to increase coverage of supported BPF
features and hardening the type deduction.

- PythonBPF and pylibbpf: https://github.com/pythonbpf/Python-BPF and
https://github.com/pythonbpf/pylibbpf

- Project docs: https://python-bpf.readthedocs.io/en/latest

- Video Demos: https://youtu.be/eFVhLNWEXtE?{=352

- Try it out: https://github.com/pythonbpf/Python-BPF#try-it-out

- We welcome contributions, reviews, bug reports and RFCs!

£
%\}0 PythonBPF

https://github.com/pythonbpf/Python-BPF
https://github.com/pythonbpf/pylibbpf
https://python-bpf.readthedocs.io/en/latest
https://youtu.be/eFVhLnWFxtE?t=352
https://github.com/pythonbpf/Python-BPF#try-it-out

Thanks! Questions?

PythonBPF

