
PythonBPF - Writing eBPF programs 
in pure Python
FOSDEM 2026
Pragyansh Chaturvedi, Varun Mallya
31 January 2026



Introduction

- Pragyansh Chaturvedi <r41k0u@ubuntu.com>
- Part of Ubuntu Engineering at Canonical
- Co-maintainer of PythonBPF

- Varun Mallya <varunrmallya@gmail.com>
- Engineering student
- Co-maintainer of PythonBPF



Introduction

- PythonBPF is a pure Python frontend for writing eBPF programs
- This sounds similar to what you can do with BCC, but is significantly different 



What PythonBPF does differently

- Allows a reduced Python grammar for eBPF specific code
- Abstract away typing and verifier-massaging complexities (as best as it can)



PythonBPF and BCC - side by side



Basic overview of a PythonBPF program



Compilation flow



A walkthrough - disksnoop



A walkthrough - disksnoop



A walkthrough - disksnoop



Demos and Examples

- These are the video demos: https://youtu.be/eFVhLnWFxtE?t=352 (Highly 
recommend!)

- An interactive TUI based container monitor
- Syscall anomaly detection for the Spotify snap
- Kernel stack symbolization using blazesym
- BCC’s vfsreadlat example - ported to ipynb, live TUI and interactive live web dashboard

- You can try and tweak the examples yourself at 
https://github.com/pythonbpf/Python-BPF#try-it-out 

https://youtu.be/eFVhLnWFxtE?t=352
https://github.com/pythonbpf/Python-BPF#try-it-out


The internals

- As seen in previous examples, the @bpf decorator is what signals the 
compiler that the enclosed code is to be compiled as BPF code. We call them 
BPF chunks

- Then there are specifiers for structs, maps, and global strings.



The internals - type deduction

- Due to the weakly typed nature of Python, PythonBPF has to employ type 
deduction for reliably lowering it to LLVM IR, while hiding this from the user. 
We need to see if a data container can be converted to a desired type, and do 
a best effort attempt to do it.

- This also introduces complexity in the local variable allocations, where we use 
a strategy of calculating the maximum allocations we might need, and the 
maximum scratch space (in terms of stack frames) we need for each type.

- We constantly test and improve our type deduction as this is an area most of 
our papercuts come from.



The internals - type deduction



The internals - vmlinux.py

- We write BTF info into vmlinux.h using bpftool, then run that through 
clang2py (with some tweaks) to get vmlinux.py with the kernel headers 
Pythonized.

- Internally, there is a handler that checks which structs and enums from 
vmlinux.py are being used in the program being compiled and resolves all the 
dependencies required to interface with that struct and generates IR for it as 
well.

- Once we get the headers and parse them into the required data structures, 
we generate Debug Info and add it to the IR.

- We then inject the parsed data into the symbol table and add handlers to the 
required locations where we expect vmlinux elements to be used.



Where PythonBPF shines

- Users need to be less worried about typing
- Users are shielded from common verifier massaging
- A concise, Pythonic syntax, which allows users to use Python devtools in their 

IDE
- Allows using the Python ecosystem – allows for better data analysis and 

visualization
- Ideal for beginners and quick prototyping



Next challenges

- PythonBPF is not feature complete (yet)
- For it to be a serious industry choice, it has to support all the language constructs and all 

maps, helpers and kfuncs
- One suggestion was to port the kernel selftests – but that seems to be a huge undertaking

- Establishing a feedback loop with our early adopters
- Users whose needs and use cases are very clearly defined, and can give constant feedback
- Grad students?



Our Goals

- Make PythonBPF a prime choice for users to write BPF code
- Due to the choice of language, make BPF accessible to a much wider 

audience



Summary

- PythonBPF is a reduced Python grammar for writing BPF programs in pure 
Python

- There is active development ongoing to increase coverage of supported BPF 
features and hardening the type deduction.

- PythonBPF and pylibbpf: https://github.com/pythonbpf/Python-BPF and 
https://github.com/pythonbpf/pylibbpf

- Project docs: https://python-bpf.readthedocs.io/en/latest
- Video Demos: https://youtu.be/eFVhLnWFxtE?t=352
- Try it out: https://github.com/pythonbpf/Python-BPF#try-it-out
- We welcome contributions, reviews, bug reports and RFCs!

https://github.com/pythonbpf/Python-BPF
https://github.com/pythonbpf/pylibbpf
https://python-bpf.readthedocs.io/en/latest
https://youtu.be/eFVhLnWFxtE?t=352
https://github.com/pythonbpf/Python-BPF#try-it-out


Thanks! Questions?

-


