
How we managed going to
automate SBOM generation for a
large legacy project

Thorsten Behrens
thorsten.behrens@collabora.com

mailto:thorsten.behrens@collabora.com

2/23

Overview & Challenges
Goals

● have LibreOffice-lineage
software ready for CRA times

● provide full dependency
relations

● ultimately: complete
transparency and traceability for
all product artifacts

Challenges

● impressive mix of technology

● JS/TS 3rd party modules
● >100 native code

dependencies
● edge-case fonts & dictionaries

● no automated solutions

● evolving standards & unclear
responsibilities

3/23

Let’s get going!

4/23

First steps
● assess current state (… there’s nothing ...)

● read up & talk to experts & decide on SBOMs

● roll dice & pick SPDX over CycloneDX

● realize there’s no pre-existing tools to extract all components for us

● roll up sleeves & collect Collabora Online components manually...

5/23

Collabora Online components
● looked around harder for automation, but ...

● collect JS deps manually

● notice we ship a font (for the admin console)

● add another dependency manually

● review c/c++ dependencies

● notice the generally terrible state – collect them manually

● minimally at least: update at least version info from build system!

6/23

Detour: Fonts & dictionaries
● Edge-case: fonts

● they do have a license

● and are binary artifacts

● but are they relevant for CRA? well hinting tables are code…

● Edge-case: dictionaries

● they do have a license

● and are binary artifacts

● and again, hyphenation patterns might be considered code...

7/23

No luck with Fonts anyway
● https://github.com/google/fonts/issues/8003

https://github.com/google/fonts/issues/8003

8/23

So what have we got?

9/23

Collabora Online SBOM
● commit from January 2025 :

https://github.com/CollaboraOnline/online/commit/65702e094a54dc3cdd01b74fe0380808ec125d65

10/23

Collabora Online SBOM
● collabora-online-sbom.spdx.json

● at least lists all package content relationships – 26

● version numbers coming from the build system

● manually added poco statically-linked deps:

● libz, pcre, expat
● but: missing indirect outside-package dependencies

● most prominently: collaboraoffice-core

11/23

SBOMs for a GNU make project
...and a very large one to boot.

12/23

LOKit core SBOM
● LibreOffice kit (core / collaboraoffice* packages) are complex

● >100 3rd party libs

● >50 fonts

● >50 dictionaries

● build system knows about all of those

● but again no existing, automated tooling available

● clearly c/c++ projects & bespoke build systems are a challenge

● First cut: let’s linearly list all included dependencies that we ship!

13/23

LOKit core SBOM generation
● work-in-progress SBOM generation

https://gerrit.libreoffice.org/c/core/+/183178

14/23

LOKit core open issues
● for vulnerability assessment, we require all binary artifacts!

● on disk, not just the packages...

● including their dependency tree & linkage!

● so that needs:

● SPDX 3.0.1 (according to BSI TR-03183)?

● or perhaps better CycloneDX?

● we would massively benefit from our dependencies to provide SBOMs

already

15/23

LOKit core todos
● ∀ “executables”

● … including interpreted scripts and shared libraries

● must be described as a component in an SBOM

● system libraries that are linked against must be identified

● but luckily not described
● ∀ installed components - i.e. executables, libraries & archives

● we need:

● name
● SHA512 checksum
● executable/archive/container flags

16/23

LOKit core todos (cont.)
● Information required for each bundled external component:

● canonical name
● version
● packageURL (“generic” typically)
● cpe23 identifier if it exists – these are centrally registered
● declared license
● concluded license
● Source-URL
● Source-hash
● !!files in the installed package!!

17/23

“please why does libXYZ not
have an SBOM yet?”

...and why oh why must we be at the top of the stack?

18/23

Well duh...
● all files in the installation package ?!

● how can we derive (automatically), which files originate from which
external?

● how can we derive (automatically) dynamic linking dependencies?
● How can we derive (automatically) static linking dependencies?

● sadly for c/c++, there is no existing tool that could read some
sensible package management metadata - we need a fully custom
generator

19/23

An actual plan
● bonus challenge

● should also work on macOS and Windows and iOS and Android
(where we ship)

● therefore: SBOMs must be generated during the build

● otherwise infeasible to manually maintain
● as they will depend on current build configuration

● the good news: technically, the build system knows all of this!

20/23

An actual plan (cont.)
● extract all installed files from build system dependencies
● associate them with installation packages (so we know which SBOM to add this

to)
● annotate & amend external dependencies (manual work, ideally requires

upstreaming, and/or perhaps we’re getting them over time)
● extract dynamic linking dependencies

● known in the build system for internal components
● external components might require readelf / platform-specific tools

● Extract static linking dependencies
● known in the build system for internal components
● manual work for externals – or can be provided with their SBOMs

21/23

Current state
● Collabora Online & core: static list of licenses available

● still a lot of work, but WIP patch here:

https://gerrit.libreoffice.org/c/core/+/198484

22/23

Conclusions & Questions

It sucks being at the top of the stack…
 ...and having a massive technology mix.

Get involved: We Are Hiring !
● https://collaboraonline.github.io/
● https://www.libreoffice.org/community/get-involved/

https://collaboraonline.github.io/
https://www.libreoffice.org/community/get-involved/

