Accessible Software
Performance

Alexander “zamazan4ik” Zaitsev

Few words about me

Used to be a C++ engineer (now my C++
skills are Rust-y ;)

Spent several years on “hacking” LLVM
compiler/static analyzers/C++ standard library
(libc++), etc.

Awesome PGO author

“Software Performance” devroom organizer
(you are sitting here ;)

Interested in data-driven software
optimizations

Like rapid software!

https://github.com/zamazan4ik/awesome-pgo

What do we usually hear about performance?

e \arious benchmark reports

Example: TechEmpower “benches”

Rnk Framework

O 00 N O LT A N N -

I O N O e T T = G = =
O W 00 N o0 1 A W N B O

may-minihttp

h2o0

ntex [sailfish]

ntex [async-std,db]
xitca-web
xitca-web [orm]
axum [postgresql]
lithium-postgres
lithium-postgres-beta
hyper-db

viz [postgresql]
drogon-core
vertx-postgres
quarkus, vert.x

1 just-js

salvo [postgres]
fasthttp-prefork
mormot [async,nopin]
drogon
atreugo-prefork

Best fortunes responses per second, (523 tests)

Best performance (higher is better)

1,327,378 100.0%
1,226,814 92.4%
1,210,348 91.2%
1:197.551 90.2%
1,146,712 86.4%
1,115,124 84.0%
1,114,265 83.9%
1,073,846 80.9%
1,068,560 80.5%
1,066,644 80.4%
1,060,105 79.9%
1,042,653 78.5%
1,040,599 78.4%
1,028,408 77.5%

982,024 74.0%

969,747 73.1%

959,399 | 72.3%

953,865 71.9%

947,069 71.3%

935,521 70.3%

Errors Cls Lng Plt
0O M s rs

0O Pt C Non
0 Mc s Non
0 M_cr rs Non
0 E rs Non
0O Ful rs Non
0 Ful rs rs

0 Mcr C++ Non
0 E C++ Non
0 M—cr rs rs
0 ? rs rs
0 Ful C+#+ Non
0 Pt Jav ver
0 Mcer Jav ver
0 T S jus
0 M s rs
0 P_lt Go Non
Ful pas Non
Ful C+#+ Non
Pt Go Non

D ONCEY

FE Aos

may

h2o

nte
nte
xit
xit
]
Non

Non

Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin
Lin

o
o~)

FfddFdfddddddsddadadaa

s &

Dos Orm |A
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Ful Rea
Lin Raw Rea
Lin Ful Rea
Lin Ful Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Raw Rea
Lin Mcr 4Rea

Lin Raw Rea

What do we usually hear about performance?

e \arious benchmark reports

e Engineering blogs like "We've rewrote smth #-Rust and now our performance
is blazing fast!"

e Hardcore / low-level stuff about performance optimizations

e Academy papers about various performance-related stuff like a new algorithm
for something (e.g. the simd-json paper)

But one point is frequently missed...

https://lemire.me/en/publication/arxiv190208318/

How accessible to you is yet
another performance win”?

Which improvement is easier to use and why?

Clang AutoFDO & Propeller Optimization Support Sent In For Linux
6.13: 5~10% More Performance

Written by Michael Larabel in Linux Kernel on 30 November 2024 at 12:00 AM EST. 3 Comments

OR

New Linux Kernel Patches From Intel Delivering +18% Database
Performance

Written by Michael Larabel in Linux Kernel on 17 October 2025 at 06:45 AM EDT. 6 Comments

Compilers, their compilation models,
and data-driven optimizations

AOT vs JIT in workload-specific optimizations

e In JIT in most cases it "just works"
e InAOT world it's called PGO. And it needs to be integrated separately

s PGO that important?

Application Improvement Library Improvement

Rustc up to +15% compilation speed serde_json ~15% improvement
Vector +15% EPS xml-rs ~35% improvement
Rust Analyzer +20% speedup quick-xml ~25% improvement
PostgreSQL up to +15% faster queries tonic ~10% improvement
SQLite up to 20% faster queries rustls ~6% improvement
ClickHouse up to +13% QPS axum ~10% improvement
MySQL up to +35% QPS tantivy ~30% improvement
\Y[eglefe]B]=} up to 2x faster queries wgpu ~25% improvement
Redis up to +70% RPS tracing libs ~35-40% improvement

10

To enable PGO you need...

e

Compile your application with instrumentation

Run on a target workload and collect a profile
Recompile your application once again with the profile
You got your PGO-optimized app!

However, additionally you get ...

11

PGO IMPLEMENTER

"We'll see 20%o speedup easy" --

"This will definitely improve "Trust me, | know what I'm i
performance” - breaks doing” — hasn't read the 0.1% improvement after 3 months
production documentation

"Just need to tweak a few more "Just one more bhuild

T§Y H L\l
flags" -- 500 compiler errors It's not my code, It's the

cycle" -- said 6 hours ago compiler” -- forgot to
enable optimizations

.] "PGO will solve all
"Profile-guided

ofile-guide our problems" --
optimization Is the _ introduces 17 new
future” -- can't profile ones

real workloads

S\ifaer

... a bunch of additional issues!

Double / triple compilation

Think about profile regeneration, profile storage, profile update strategy
Integrate PGO into your application / build system / Cl properly

Mitigate instrumentation overhead via even more complicated things like
Sampling PGO and Parca / Yandex.Perforator

(K

https://www.parca.dev/
https://perforator.tech/

[
'
'
'
'
'
'
'
'
'
'
'
'
|
1
'
1
'
'
'
'
'
'
'
'
'
'
1
\

‘Server #1

()
(=}
3
ot
o
("8
3
©
3
>

N

[}
o
-
._n
®!
ol
L

o
5
o
h
e
=
®

'Server #2

\

1

|

'

'

'

'

'

'

'

'

|

|

I

y
()

o

=)
t

o
e

3

[}

=3;
m

O
[=]
3
ct
o
e
3
®©
=
o

}
|
'
|
I
'
|
1
'
|
|
1
|
'
|
1
'
|
1
|
'
|
|
'
|
'
|
\

[\‘ T T T T T ~\\ | ‘l
| Perforator | b o : 3 i :
- e] I
] Agent ! 7 ontainer | ! Agent !
v ,’ \ ,' \
SRR e e R
|
_______ Ll o iciddacadaddoadaacainnoioarzrioraie
1 ’
i /
\ /
\ /
\ /
\ /
\ ,
\
Push profile y
~‘~‘—“\-~ ’I’II/I, \
e M J
¥ Storage N T R R R R B R R A R RS RS RER 2
. pods S Perforator databases joesians e
Q p . 3 S
N -l \ S 2 '
N [N] . ~ !
AN 4 Sl 1 2R 5 et
N N 4 - ! e S R S5
N w Store binary meta . - . V] Vi
- i 5
. \ “~\‘_$/’ \\ / ClickHouse E
\ \ 1 ~
Get service \ .1 PostgreSQL ! (profiles) i
. i A S
profile N i1 (binaries) | _--)
N ”“s N ateses: ll ," N \\ ool
.. ,/ N \\ ! \\ ’,/ '/ RS2 ,/ L
\\A "l \\\ : ‘\7\ ----- —‘f ll’ \‘ \\\\ ”’r E
’ ~) ,/ ~ S ———- X
y . Store blnar‘y/proflleI % ! S3-compatible & ;
’ 3 ~ Se-al & 3 1 ’
. Symbolizer . ;{» _________ a object store ; o E
’ B A B ’
\\‘ pods /’I /,/ : >\\ l,l /, :
o 7 -l o : i . i
N ’ =~ [} N o 7 1
N . . =0 i ’ 1
. S “--Find binary meta : S s]
q e R S e e s G !
o Download matched profiles/binaries e

“Select profiles matching {selector}

. a bunch of additional issues!

Double / triple / even quadruple (!) compilation

Think about profile regeneration, profile storage, profile update strategy, etc.
Integrate PGO into your application / build system / Cl properly

Mitigate instrumentation PGO overhead via even more complicated things like
Sampling PGO and Parca / Yandex.Perforator

tomimica Iraetlon III llmpl'

15

https://www.parca.dev/
https://perforator.tech/

Documentation

16

Books

dystems
Performance

Enterprise andthe Cloud=

Second Edition

Brendan Gregg

S31¥3S ONILNAWOD TYNOISSIHO¥d AFTSIM-NOSIAay :»

Hacker’s Delight

SEcoND EDITION

HENRY S. WARREN, JR.

intel

Intel™ 64 and IA-32 Architectures
Optimization Reference Manual

17

Or in any other form

(Unofficial) Rust Performance book
min-sized-rust

Project-specific optimization guidelines

Various blogs with “Top 10 best practices” articles
Reddit

Youtube coding influencers

“Awesome PGO” wall of text

“Accessible Software Performance” talk

All of them have the same obvious issue...

18

https://nnethercote.github.io/perf-book/
https://github.com/johnthagen/min-sized-rust

Most people just don’t read/listen/watch them!

19

/& E H T H T LI I docs.rs crates.io Q Search #K O ®mM D X ¥ @ m OAuto v

Layout > Optim i zations On this page

Rendering > " . N) e)) overiow
. Make sure you enable additional compiler optimizations for the release build. This will help reduce the size of the resulting
Widgets > ; o y Release Checklist
binary. Add the following lines to your Cargo.toml file:
Testing > Screenshots
o Optimizations
Applications v)
PP . [profile.releasel Rofarondes
Develop Applications codegen-units = 1 # Allows compiler to perform better optimization.
CLI Arguments 1to = true # Enables Link-time Optimization.
Configuration Directories opt-level = "s" # Prioritizes small binary size. Use '3° if you prefer speed.

Logging with Tracing strip = true # Ensures debug symbols are removed.

Terminal and Event Handler

Setup Panic Hooks

color_eyre Error Hooks Refe ren Ces

Better Panic Hooks

Migrate from tui-rs codegen-unitsg; : Tweaks a tradeoff between compile times and compile time optimizations.

Spawn External Editor (Vim) Itogs: Enables Link-time Optimization.

Releasing Your App opt-levelg;: Determines the focus of the compiler in optimizations. Use 3 to optimize performance, z to optimize for

size, and s for something in-between.

Ecosystem >
stripg;: Strip either symbols or debuginfo from a binary.
FAQ
Highlights >
Showcase > £ Edit page
Templates >
References Previous Next 20

Chnawn Evitarnal EAitAar (\/im) Effarte anAd animatinne

¥ DIOXUS Leamn Components

Using Stable Version
0.7.0

INTRODUCTION

Welcome

Getting Started

TAKE A TOUR
Overview

Tooling Setup
Creating a new app
Your First Component
Creating Ul with RSX
Styling and Assets
Adding State
Fetching Data

Add a Backend
Working with Databases
Routing and Structure
Bundling

Deploying

Next Steps

CORE CONCEPTS

<>

Build configuration

Note: Settings defined in .cargo/config.toml will override settings in Cargo.toml .

Other than the --release flag, this is the easiest way to optimize your projects, and also the most
effective way, at least in terms of reducing binary size.

Stable

This configuration is 100% stable and decreases the binary size from 2.36mb to 310kb. Add this to
your ' .cargo/config.toml :

[profile.release]
opt-level = "2"
debug = false

lto = true
codegen-units = 1
panic = "abort"
incremental = false

Links to the documentation of each value:
* opt-level
e debug
¢ lto
¢ codegen-units
* panic
e strip

e incremental

/ R @ () s

ON THIS PAGE

Building in release mode

UPX

Build configuration
Stable
Unstable

wasm-opt

Improving Dioxus code

Optimizing the size of assets

Edit this page 7

21

(2 TAURI @ searr

Guides

B References

& Blog

Quick Start >

Core Concepts v
Overview

Tauri Architecture
Process Model

App Size

Inter-Process
Communication

>

Security >
Develop >
Distribute >
Learn >
Plugins >
About >

#K Guides References Blog Releases

Cargo Configuration

One of the simplest frontend agnostic size improvements you can do to your project is adding a

Cargo profile to it.

Dependent on whether you use the stable or nightly Rust toolchain the options available to you

differ a bit. It's recommended you stick to the stable toolchain unless you're an advanced user.

Stable Nightly

src-tauri/Cargo.toml

[profile.dev]
incremental = true # Compile your binary in smaller steps.

[profile.release]

codegen-units = 1 # Allows LLVM to perform better optimization.

1to = true # Enables link-time-optimizations.

opt-level = "s" # Prioritizes small binary size. Use "3 if you prefer speed.
panic = "abort" # Higher performance by disabling panic handlers.

strip = true # Ensures debug symbols are removed.

References

@ Note

This is not a complete reference over all available options, merely the ones that we'd like to
draw extra attention to.

O ® Y ¥ @ N HEnglsh

On this page
Overview
Cargo Configuration
References

Remove Unused Commands

v

¢

22

Created by me

is:issue author:@me sort:updated-desc "Enable Link-Time Optimization (LTO) for the Tauri part"

22 results

(® Enable Link-Time Optimization (LTO) for the Tauri part | enhancement
th3oth3rjak3/timely#6 - by zamazand4ik was closed on Jan 1 - Updated on Jan 1

(® Enable Link-Time Optimization (LTO) for the Tauri part
BDenizKoca/Tideflow-md-to-pdf#5 - by zamazan4ik was closed on Oct 7, 2025 - Updated on Oct 7, 2025

(® Enable Link-Time Optimization (LTO) for the Tauri part
atuinsh/desktop#90 - by zamazandik was closed on Oct 6, 2025 - Updated on Oct 6, 2025

(® Enable Link-Time Optimization (LTO) for the Tauri part | enhancement ' = Rust
gethopp/hopp#35 - by zamazandik was closed on Aug 27, 2025 - Updated on Aug 27, 2025

(® Enable Link-Time Optimization (LTO) for the Tauri part
EpicenterHQ/epicenter#574 - by zamazandik was closed on Jul 27, 2025 - Updated on Jul 27, 2025

(® Enable Link-Time Optimization (LTO) for the Tauri part
ByteAtATime/flare#4 - by zamazandik was closed on Jul 14, 2025 - Updated on Jul 14, 2025

(® Enable Link-Time Optimization (LTO) for the Tauri part
CyberTimon/RapidRAW#47 - by zamazan4ik was closed on Jul 10, 2025 - Updated on Jul 10, 2025

(® Enable Link-Time Optimization (LTO) for the Tauri part
OmniKee/OmniKee#1 - by zamazan4ik was closed on May 2, 2025 - Updated on May 2, 2025

(® Enable Link-Time Optimization (LTO) for the Tauri part
frstycodes/sendit#2 - by zamazan4ik was closed on May 2, 2025 - Updated on May 2, 2025

114

f11

=1 Updated

I

{1

J2

31

s

1

I

Q

-

23

Created by me Newissue

is:issue author:@me sort:updated-desc "Use recommended by Ratatui docs optimization options for Release builds" Q
5 results =1 Updated ~
(® Use recommended by Ratatui docs optimization options for Release builds N1 Os

Bengerthelorf/bcmr#1 - by zamazandik was closed 3 weeks ago - Updated 3 weeks ago

(® Use recommended by Ratatui docs optimization options for Release builds

11
harsh-vardhhan/option-analysis#6 - by zamazandik was closed 3 weeks ago - Updated 3 weeks ago
(© Use recommended by Ratatui docs optimization options for Release builds | enhancement O p ’
huseyinbabal/tgcp#13 - by zamazan4ik was closed 3 weeks ago - Updated 3 weeks ago
(© Use recommended by Ratatui docs optimization options for Release builds O3
pawurb/hotpath-rs#101 - by zamazandik was closed on Dec 20, 2025 - Updated on Dec 20, 2025
(® Use recommended by Ratatui docs optimization options for Release builds O

LargeModGames/spotatui#5 - by zamazandik was closed on Dec 9, 2025 - Updated on Dec 9, 2025

24

doc: add suggestions regarding Cargo flags for Release builds #9371 Edt <> Code +

- orhun merged 2 commits into ratatui:main from zamazandik:main (CJ on Sep 19, 2025

) Conversation 4 -0 Commits 2 [l Checks 7 Files changed 1 +26 -0 1
a zamazandik commented on Aug 24, 2025 Contributor = *** Reviewers
orhun v
Partially resolves #930
Assignees

In this PR, | want to introduce additional guidelines for Ratatui users regarding recommended Cargo options for their Ratatui-
based apps. The recommendations are highly inspired by the similar Tauri documentation (no licensing issues since Tauri
docs are MIT licensed).

My motivation for that:

= By enabling better compiler optimizations, we can deliver better user experience for end users of Ratatui-based
applications

 Enabling LTO, CG1 (codegen-units = 1) and strip reduces the resulting binary size - pretty common complaint about
Rust apps. So we can improve the situation a bit on the ecosystem level

My personal motivation: | use a lot of Rust (and Ratatui) based apps in various environments, and some of my environments
are pretty size-constrained. My main use-case for smaller apps is preparing minimal Docker images (especially when we talk
about minimal sidecars).

Differences from Tauri recommendations:

» | removed potentially harmful recommendations like panic = abort . | am not saying that this is a bad recommendation -
just saying this setting is a bit more dangerous than enabling LTO or codegen-units . If we are ok with that - no problem,
we can also add a line about this setting too

« | left recommendations just for the stable Rustc. If we are interested enough in giving recommendations for Nightly-only
stuff - we can add it later.

Maybe someone can find arguable a recommendation about strip setting. In this case, we can remove it from the default
recommendation. However, personally, | think we should recommend it by default too.

1 am open for the discussion about the recommended defaults for Ratatui.

| didn't test how my changes are rendered locally - just created this PR via GitHub web Ul.

(©)

No one assigned

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

Successfully merging this pull request may close
these issues.

@ :{ d iler/Cargo opti as apar...

Notifications Customize

X Unsubscribe

You're receiving notifications because you authored
the thread.

2 participants

2% 25

And even if they read documentation...

e Documentation doesn’t have really important details
o That’s how “Awesome PGO” was created

26

27

And even if they read documentation...

e Documentation is outdated

e Documentation is outdated and you cannot figure it out
o E.g. previous Clang FE PGO vs IR PGO recommendations

28

Recommend -fprofile-generate instead of -fprofile-instr-generate for PGO in
Clang's user manual #45668

ﬁ zmodem opened on Jun 15, 2020 Member
N

Bugzilla Link 46323

Version trunk

0s Linux

cc @gburgessiv,@LebedevRI
Extended Description

Clang's user manual currently recommends -fprofile-instr-generate for instrumentation based profile-guided optimization
(https://clang.llvm.org/docs/UsersManual.html#profiling-with-instrumentation)

Towards the end of that section, there is a part about -fprofile-generate saying it's an alternative instrumentation method.

However, my understanding is that -fprofile-generate is really better for PGO (it supports value profiling for example), and -
fprofile-instr-generate is best left for code coverage analysis.

If my understand is correct, can we update the docs to reflect this?

Q© (&1

5 @ livmbot transferred this issue from livm/llvm-bugzilla-archive on Dec 10, 2021

zamazandik on Nov 29, 2023 Member

| can confirm that your understanding is correct according to the discussions in https://discourse.llvm.org/t/profile-guided-
optimization-pgo-related-questions-and-suggestions/75232 and https://discourse.llvm.org/t/status-of-ir-vs-frontend-pgo-
fprofile-generate-vs-fprofile-instr-generate/58323

Assignees

No one assigned

Labels

PGO ' bugzilla ' documentation

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

23 Code with agent mode v

No branches or pull requests

Notifications Customize

%) Unsubscribe

You're receiving notifications because you're
subscribed to this thread.

29

Participants

AN s A

] (93 github.com/yugabyte/yugabyte-db/issues/30080 o Q & ']

[DocDB] Use IR/CSIR profile guided optimization #30080
©closed

es1024 opened last week - edited by atlassian Edits v | Contributor
Jira Link: DB-19937

Description

We currently use frontend PGO (-fprofile-instr-generate) for the prof_gen build type. We should switch to IR/CSIR PGO. This
also involves multiple passes of PGO so support should be added for that.

Issue Type

kind/enhancement

Warning: Please confirm that this issue does not contain any sensitive information

&4 | confirm this issue does not contain any sensitive information.

o

Assignees

@ os1024

Labels
area/docdb

priority[mediu

Type

No type

Projects

No projects

Milestone

No milestone

Relationg(ps

None vat

[#30080] build: Add --pgo-instrument-type and switch to IR+CSIR PGO

Summary:
Our PGO build currently uses frontend PGO. IR+CSIR PGO shows significantly better
performance numbers. So moving to that.

Doing IR + CSIR PGO involves:

1. building IR PGO build, and generating a profile

2. building CSIR PGO build using the IR PGO profile, and generating a new profile
3. building a final build using the combined profile

This revision introduces the —-pgo-instrument-type=[ir|csir] flag to pick between IR and CSIR PGO
build for the prof_gen build type. The prof_use build type was removed entirely, and the
——pgo-data—-path flag is now usable in any build type (needed for the CSIR prof_gen build as well
as the final release build).

Test Plan:
Jenkins: compile only
Built IR+CSIR PGO build.

Perf reports:

- [TPCC]
(https://perf.dev.yugabyte.com/report/view/W3sibmFtZSI6ImJhc2UilCIpc@Ihc2VsaW51Ijp@cnVI1LCIOZXNOX21kIjoiMTU2MDc3MDIifSx7Im5hbWUi0iJGRSBQRO8iLCIg
zdF9pZCIGIjEIN] k40TAyIiwiaXNCYXN1bGluZSI6ZmFsc2VILHs ibmFtZSI6IKNTSVIgUEdPIiwidGVzdF9pZCI6IjEIN]k5MDAYIiwiaXNCYXN1bGluZSI6ZmFsc2VIXQ==

- [sysbench oltp_read_only]
(https://perf.dev.yugabyte.com/report/view/W3sibmFtZSI6ImJhc2UilLCIpc@Ihc2VsaW51Ijp@cnV1LCIOZXNOX21kIjoiMTU2MDgXxMDIifSx7Im5hbWUi0iJGRSBQRO8iLCIg
zdF9pZCI6IFEINjk3NjAyIiwiaXNCYXN1bGluZSI6ZmFsc2VILHsibmFtZSI6IKNTSVIgUEdPIiwidGVzdF9pZCI6IFEIN]k3NzAyIiwiaXNCYXN1bGluZSI6ZmFsc2VIXQ==

- [sysbench oltp_read_writel
(https://perf.dev.yugabyte.com/report/view/W3sibmFtZSI6ImJhc2UilLCIpc@Ihc2VsaW51Ijp@cnV1LCIOZXNOX21kIjoiMTU2MDgIMDIifSx7Im5hbWUi0iJGRSBQRO8iLCIy
zdF9pZCIGIjEINjk4MjAyIiwiaXNCYXN1bGluZSI6ZmFsc2VILHsibmFtZSI6IKNTSVIgUEdPIiwidGVzdF9pZCI6IjEIN] k4MzAyIiwiaXNCYXN1bGluZSI6ZmFsc2VIXQ==

IR PGO and IR+CSIR PGO show around a 7-10% improvement over frontend PGO.

Reviewers: steve.varnau
&
Reviewed By: steve.varnau

And even if they read documentation...

e Documentation is simply lying
o “PGO doesn’t help SQLite” in official docs vs 10% performance improvement from PGO in the
official SQLite benches in practice

32

Tooling

How tooling can help us to unlock performance?

Automate “best practice” integration into applications
Convenient benchmarking

Automate optimization routines

Profilers with good vizualizations

34

Example: creating a new application from a template

e We can try to integrate recommended optimizations into templates, and
create new apps from these templates

e Some examples:

o Ratatui: templates via cargo-generate (merged!)
o Tauri: create-tauri-app (open issue)
o Dioxus: dioxus-template via the dx tool (open issue)

e However, this way still has issues:

o People don’t use project generators for various reasons (copy&paste, lack of knowledge, LLM)
o Already created applications are not covered anyway (e.g. Ratatui case)

35

https://ratatui.rs/templates/
https://cargo-generate.github.io/cargo-generate/
https://github.com/tauri-apps/create-tauri-app/issues/945
https://github.com/DioxusLabs/dioxus-template/issues/87

Example: Benchmarking in Rust vs C++

e Benchmarking is needed to measure performance improvements
e Good example: cargo bench in Rust

e Bad example: <blank> in C++
o What to use by default? Probably Google Benchmark...

o How to install Google Benchmark? Conan, Vcpkg, system deps...
o How to run the benchmark? Check build scripts / README / whatever

36

https://doc.rust-lang.org/cargo/commands/cargo-bench.html

> cargo wizard
> Select the profile that you want to update/create: release (builtin)
> Select the template that you want to apply: FastRuntime: maximize runtime performance
> Select items to modify or confirm the template: Debug info -
> Select value for 'Debug info : Limited debuginfo 1
> Select items to modify or confirm the template: <Confirm>
Cargo.toml
6 6 | # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
TN |
8 8 | [dependencies]

9 +

10 + [profile.release]

11 + lto = true

12 + codegen-units =1

13 + panic = "abort"

+

14 debug = 1
.cargo/config.toml
1 + [build]
2 + rustflags = ["-Ctarget-cpu=native"]

> Do you want to apply the above diffs? Yes
Template FastRuntime applied to profile release.
A Do not forget to run ‘cargo <cmd> --release’ to use the selected profile.
Tip: consider using the cargo-pgo subcommand to further optimize your binary.
Tip: find more information at https://nnethercote.github.io/perf-book/build-configuration.html.

o |

Example: Post-Link Optimization (PLO)

e TL;DR: PLO =PGO on steroids
e Enables even more optimizations like function reorder, hot/cold split, etc.

e Available open-source tools at the moment:

o LLVM BOLT - the most popular PLO tool nowadays
o Google Propeller

o Intel Thin Layout Optimizer (TLO) - RIP

38

https://github.com/llvm/llvm-project/blob/main/bolt/README.md
https://github.com/google/llvm-propeller
https://github.com/intel/thin-layout-optimizer

Cumulative speedup over bootstrapped build,
Building Clang

. 46.0% 2.0%

5.2% 4 13.2% 26.0%

25.7%

41.3%

lvy Bridge

Broadwell

Skylake

Icelake

Golden Cove
(Alderlake-P)
Gracemont
(Alderlake-E)

Zen1 s 42.6%
Zen2

Zen3

45% 0% 45%
B PGO B +BOLT Thin,TO M +PGO [l +BOLT

DEVELOPERS’ MEETING

SAN JOSE, CALIFORNIA « HAYES MANSION

Optimizing Clang with BOLT using CMake

Amir Ayupov

Example: PGO + PLO with cargo-pgo in Rust

Build PGO instrumented binary

$ cargo pgo build

Run binary to gather PGO profiles

$./target/.../<binary>

Build BOLT instrumented binary using PGO profiles

$ cargo pgo bolt build ——with-pgo

Run binary to gather BOLT profiles

$./target/.../<binary>-bolt-instrumented

Optimize a PGO-optimized binary with BOLT

$ cargo pgo bolt optimize ——with-pgo e

https://github.com/Kobzol/cargo-pgo

Example: PGO + PLO manually in C++

1. Pass proper PGO compiler flags into your build scripts

2. Build

3. Run

4. Collect PGO profiles

5. Convert them in a proper format

6. Recompile your app once again with a different PGO flag
7. Figure out how to run LLVM BOLT

8. Instrument your binary from the the step 6 with BOLT

9. Run the new binary once again

0. Optimize binary with a different BOLT command

41

Issues with extra tooling

e People don’t know about these tools

e Tools are not easy to install:
o No prebuilt package in a repository (LLVM BOLT case)

o No easy way to build tool on your own (Google AutoFDO, Google Propeller, BOLT before
LLVM)

e All the same issues with documentation :)

42

Defaults

Why defaults are so important?

Defaults will be used by most users.

!

Defaults will be the most impactful on the ecosystem.

44

Changing defaults is hard!

According to the Hyrum's law:

With a sufficient number of users of an API,

it does not matter what you promise in the contract:
all observable behaviors of your system
will be depended on by somebody.

45

https://www.hyrumslaw.com/

Example: the Rust ecosystem - good examples

e Using LLD linker on Linux by default

46

https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/

Time to link (seconds)

B GNUId242 W GNUgold2.38 © LLVMIId 19.0.0 M mold 2.4.0

50

40

30

20

10

l. B
0 e]

MySQL 8.3 Clang 19.0
(0.47 GiB) (1.56 GiB)

Programs and their binary sizes

Chromium 124
(1.35 GiB)

47

ms

6 000

5000

4 000

3 000

2000

1 000

ryzen-9955hx - chrome - time

20.1.8
Ubuntu

+513%

Mold
2404

+120%

wild
0.6.0

+17%

Wild
0.7.0

+15%

Wwild
0.8.0

+0%

48

Example: the Rust ecosystem - good examples

Using LLD linker on Linux by default

Building Rustc and Rust Analyzer with LTO/PGO/PLO by default
Using Jemalloc for Clippy

strip = “"debuginfo” in Release by default

49

https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/
https://github.com/rust-lang/rust-analyzer/pull/19582
https://github.com/rust-lang/rust/pull/142286
https://kobzol.github.io/rust/cargo/2024/01/23/making-rust-binaries-smaller-by-default.html

Example: cargo install in Rust

e De facto a default way to install Rust-based binaries
e Gentoo-style: compiling a binary on a target machine

e With the same tradeoffs:
o Pros: you can optimize for your hardware (like CPU-specific instruction set)
o Cons: you have more limitations for “expensive” optimizations like LTO

e Prebuilt binaries exist - cargo binstall - but are not that popular

50

https://github.com/cargo-bins/cargo-binstall

Example: dist (aka cargo-dist)

e Probably the most popular tool for preparing Release binaries in Rust

Pick good build flags for 'shippable binaries’

\ 4

Gankra on Feb 24, 2023 Contributor = Author

| opted for "thin" to err more on the side of "a lot of applications are going to get built and never downloaded, and it's wasteful
to opt people into super expensive builds if that's the case". The user can tune it more aggressively if they want (in the future
I'll have docs suggesting reasonable tweaks).

®) 51

https://github.com/axodotdev/cargo-dist
https://axodotdev.github.io/cargo-dist/

Created by me

is:issue author:@me sort:updated-desc "Consider enabling more aggressive optimizations for the Dist profile"

11 results

©)

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1

dsalazad/cilens#2 - by zamazandik was closed 2 weeks ago - Updated 2 weeks ago

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
OpenSauce/rustortion#110 - by zamazan4ik was closed on Nov 27, 2025 - Updated on Nov 27, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
spinel-coop/rv#48 - by zamazan4ik was closed on Aug 27, 2025 - Updated on Aug 27, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
leptos-rs/cargo-leptos#501 - zamazan4ik opened on May 3, 2025 - Updated on May 5, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
Skardyy/mcat#2 - by zamazan4ik was closed on Apr 29, 2025 - Updated on Apr 29, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
nik-rev/peashot#1 - by zamazan4ik was closed on Apr 16, 2025 - Updated on Apr 16, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units = 1
ynqga/jnv#88 - zamazan4ik opened on Apr 2, 2025 - Updated on Apr 2, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
ynga/empiriqa#1 - zamazan4ik opened on Mar 20, 2025 - Updated on Mar 20, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
dhth/bmm#4 - by zamazan4ik was closed on Feb 22, 2025 - Updated on Feb 22, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
solidiquis/grits#15 - zamazan4ik opened on Jan 22, 2025 - Updated on Jan 22, 2025

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1
mitsuhiko/systemfd#33 - by zamazan4ik was closed on Jan 22, 2025 - Updated on Jan 22, 2025

=1 Updated

§21 Qs

enhancement

enhancement

enhancement

4] 12

- New issue \

Q

52

Example: an idea about LTO for Rust by default

e Bring the LTO benefits for the whole Rust ecosystem at once
o Luckily, LTO in Rust is much safer to enable compared to C++

53

InBetweenNames / gentooLTO Q Type[/]to search 8 6~ ++- O n

(@ Issues 210 11 Pullrequests 22 &y Agents L)) Discussions (®) Actions [Projects [0 wiki () Security |~ Insights

is:issue state:open Q O Labels > Milestones \ New issue J

Open 210 Closed 354 Author ~ Labels ~ Projects ~ Milestones ~ Assignees ~ =1 Newest ~

() broken symlinks
#895 - Samson7 opened on Apr 11, 2024

B Ji |
() net-fs/cifs-utils fails to build with Itoize
#893 - jonesmz opened on Jan 22, 2024

(© Remove some packages from nolto.conf
#892 - Connor-GH opened on Jan 8, 2024

(© dev-util/hip can't be built with LTO
#890 - SpookySkeletons opened on Nov 5, 2023

(© dev-util/spirv-tools causes runtime failures with LTO
#889 - eternal-sorrow opened on Oct 8, 2023

(© pytorch segfaults when compiling nvidia-cuda-toolkit with Ito
#888 - Xephobia opened on Aug 23, 2023

() Portageq depreciated, causes warnings while building anything
#883 - Phoenix591 opened on Jun 7, 2023

(© sys-devel/llvm-16.0.4 fails to build with -fipa-pta
#881 - SigHunter opened on May 25, 2023

13 02
(© Ito-rebuild fails to find archives for GCC 12 -> 13 update

#878 - zeule opened on May 5, 2023

(© media-tv/v4l-utils-1.24.1 won't build with LTO 54
#877 - hbent opened on Apr 16, 2023

D

Example: an idea about LTO for Rust by default

e Not only for Rust but for dependent ecosystems too like Rust-based Python
packages with maturin (and other deps)

e There are multiple issues here:
o People use Relese profile during the development phase

55

https://github.com/PyO3/maturin/issues/1529

The Cargo Book

release

The release profile is intended for optimized artifacts used for releases and in production. This
profile is used when the --release flagis used, and is the default for cargo -install.

The default settings for the release profile are:

[profile.release]
opt-level = 3

debug = false
split-debuginfo = '...' # Platform-specific.
strip = "none"
debug-assertions = false
overflow-checks = false
lto = false

panic = 'unwind'
incremental = false
codegen-units = 16

rpath = false

56

@

Someone hamed "zamazan4ik" opened an issue in my project
about enabling LTO. 3 weeks later, it happened again in another
project of mine. | opened his profile, and he has opened issues
and PRs in over 500 projects about enabling LTO. Has this
happened to you?

GitHub Search Result

This is like the 8th time | randomly find zamazan4k suggesting LTO on a random project | visited.
| applaud the effort, just wow. That is what | call dedicated.

I'm wondering what drives him to do this

¢ ag2dy - O 139

57

D % reddit.com/user/zamazan4ik/ =L ' S:} a @ ﬁ [

CQ Find anything fos) Ask) 33 GetApp ‘

»
This account has been banned

58

is:issue author:@me sort:updated-desc LTO Q

510 results =1 Updated ~

(©) FOSDEM 2026 edition: Enable Link-Time Optimization (LTO) and codegen-units = 1 for CLI Release builds

fossasia/badgemagic-rs#115 - zamazand4ik opened 1 hour ago - Updated 1 hour ago

(> Enable Link-Time Optimization (LTO) and codegen-units = 1 for Release builds

yazaldefilimone/ffmpreg#16 - zamazan4ik opened 3 weeks ago - Updated 16 hours ago

g

(® Enable Link-Time Optimization (LTO)
pier-cli/pier#97 - by zamazan4ik was closed 2 days ago - Updated 2 days ago

i1 12

(» Enable more aggressive optimizations for the Release profile (area/cli | performance
avelino/jbundle#35 - by zamazan4ik was closed 3 days ago - Updated 3 days ago

i1 2

(© Enable Link-Time Optimization (LTO) and codegen-units = 1 for Release builds
clflushopt/tpchgen-rs#232 - zamazan4ik opened 5 days ago - Updated 4 days ago

Ja

(» [ENHANCEMENT]: Enable Link-Time Optimization (LTO) ' Good First Issue
Feature Tidal-Lang/Tidal#1 - by zamazandik was closed on Nov 27, 2024 - Updated 5 days ago

iy A
(© Enable Link-Time Optimization (LTO) and codegen-units = 1 for Release builds .

1jehuang/mermaid-rs-renderer#13 - zamazan4ik opened last week - Updated last week

(® Enable Link-Time Optimization (LTO) and codegen-units = 1 for Release builds

tarka/vicarian#20 - by zamazan4ik was closed last week - Updated last week

T

(> Tweak Cargo settings for the Release profile

marin-m/SongRec#211 - zamazan4ik opened 2 weeks ago - Updated 2 weeks ago

(® Use more aggressive Cargo optimization options for Release builds O 1o 59

skim-rs/skim#899 - by zamazan4ik was closed 2 weeks ago - Updated 2 weeks ago

is:issue is:closed author:@me sort:updated-desc LTO

357 results

©

©

Enable Link-Time Optimization (LTO)
pier-cli/pier#97 - by zamazan4ik was closed 2 days ago - Updated 2 days ago

Enable more aggressive optimizations for the Release profile (area/cli | performance
avelino/jbundle#35 - by zamazan4ik was closed 3 days ago - Updated 3 days ago

[ENHANCEMENT]: Enable Link-Time Optimization (LTO) Good First Issue
Feature = Tidal-Lang/Tidal#1 - by zamazan4ik was closed on Nov 27, 2024 - Updated 5 days ago

Enable Link-Time Optimization (LTO) and codegen-units = 1 for Release builds

tarka/vicarian#20 - by zamazan4ik was closed last week - Updated last week

Use more aggressive Cargo optimization options for Release builds

skim-rs/skim#899 - by zamazan4ik was closed 2 weeks ago - Updated 2 weeks ago

Enable Link-Time Optimization (LTO) and codegen-units = 1 for Release builds

vyavdoshenko/red#4 - by zamazandik was closed 2 weeks ago - Updated 2 weeks ago

Use recommended by Tauri Cargo configuration options at least for Release builds | enhancement

aegixx/aws-loggy#28 - by zamazandik was closed 2 weeks ago - Updated 2 weeks ago

Consider enabling more aggressive optimizations for the Dist profile: Fat LTO and codegen-units =1

dsalazad/cilens#2 - by zamazandik was closed 2 weeks ago - Updated 2 weeks ago

Enable Link-Time Optimization (LTO) and codegen-units = 1 for Release builds | enhancement

itsmontoya/scribble#99 - by zamazan4ik was closed 3 weeks ago - Updated 3 weeks ago

Enable Link-Time Optimization (LTO) and codegen-units = 1 for Release builds
hougp/kiorg#107 - by zamazand4ik was closed 3 weeks ago - Updated 3 weeks ago

i1

§21

§21

L

i1

i1

) §V

2

J2

J1

i

310

=

(|

Qs

J1

1

Q

=1 Updated ~

60

£
[

Cargo.toml Outdated ¥ Hide resolved

'S

91 91 rcgen = "0.14"
92 +
93 + [profile.release]
94 + lto = true
& Copilot Al on Aug 7, 2025

[nitpick] Consider using lto = "thin" instead of lto = true (which is equivalentto lto = "fat"). Thin LTO
provides most of the benefits with significantly faster compile times, making it more practical for CI/CD pipelines
while still achieving substantial binary size reduction.

Suggested change

- lto = true

+ lto = "thin"

@ i) CA Copilot uses Al. Check for mistakes.

"*) berkus on Aug 7, 2025 Contributor = Author

Go away.

© (@4

a Reply... 61

More ideas!

e Advent of Compiler Optimizations from Matt Godbolt - what about other
optimization domains?
o E.g. “Advent of ClickHouse optimizations”, huh?

e Performance challenges database from real open-source project

o Like 1BRC but real challenges for real workloads.
o “1 billion requests challenge for Nginx”? :)

e Pushing faster tools by default
o Like grep -> ripgrep
e "Software Performance" devroom at FOSDEM « you are sitting here!

62

https://xania.org/202511/advent-of-compiler-optimisation
https://godbolt.org/
https://github.com/gunnarmorling/1brc
https://github.com/BurntSushi/ripgrep

Software Performance nicely complements FOSDEM

e Language-specific devrooms like Rust, Go (even Python ;)

e Compiler devrooms like GCC and LLVM

e Domain-specific performance achievements from HPC, Big Data & Data
Science, Databases, SDS, Bioinformatics, etc.

e Delivering performance improvements with Package management, Nix, and
Distributions

63

All my work is actually about the same thing

e “Awesome PGQ” project
o An attempt to make PGO benefits more accessible for users

e It's “Awesome LTO” spin-off
o An attempt to make LTO benefits more accessible for the Rust ecosystem

e “Software Performance devroom”
o An attempt to make rapid software more accessible for everyone

And | hope that it's only the beginning.

64

Thank you! Questions?

e Emails:

o zamazandik@tut.by (primary)

o zamazan4ik@gmail.com (secondary)
Matrix: @zamazan4ik:matrix.org
Telegram: zamazan4ik
Discord: zamazan4ik
GitHub / GitLab / Codeberg: zamazan4ik

65

