
Accessible Software
Performance

Alexander “zamazan4ik” Zaitsev

Few words about me
● Used to be a C++ engineer (now my C++

skills are Rust-y ;)
● Spent several years on “hacking” LLVM

compiler/static analyzers/C++ standard library
(libc++), etc.

● Awesome PGO author
● “Software Performance” devroom organizer

(you are sitting here ;)
● Interested in data-driven software

optimizations
● Like rapid software!

2

https://github.com/zamazan4ik/awesome-pgo

What do we usually hear about performance?

● Various benchmark reports

3

Example: TechEmpower “benches”

4

What do we usually hear about performance?

● Various benchmark reports
● Engineering blogs like "We’ve rewrote smth in Rust and now our performance

is blazing fast!"
● Hardcore / low-level stuff about performance optimizations
● Academy papers about various performance-related stuff like a new algorithm

for something (e.g. the simd-json paper)

But one point is frequently missed...

5

https://lemire.me/en/publication/arxiv190208318/

How accessible to you is yet
another performance win?

6

Which improvement is easier to use and why?

OR

7

Compilers, their compilation models,
and data-driven optimizations

8

AOT vs JIT in workload-specific optimizations

● In JIT in most cases it "just works"
● In AOT world it's called PGO. And it needs to be integrated separately

9

Is PGO that important?
Application Improvement

Rustc up to +15% compilation speed

Vector +15% EPS

Rust Analyzer +20% speedup

PostgreSQL up to +15% faster queries

SQLite up to 20% faster queries

ClickHouse up to +13% QPS

MySQL up to +35% QPS

MongoDB up to 2x faster queries

Redis up to +70% RPS

Library Improvement

serde_json ~15% improvement

xml-rs ~35% improvement

quick-xml ~25% improvement

tonic ~10% improvement

rustls ~6% improvement

axum ~10% improvement

tantivy ~30% improvement

wgpu ~25% improvement

tracing libs ~35-40% improvement

10

To enable PGO you need…

1. Compile your application with instrumentation
2. Run on a target workload and collect a profile
3. Recompile your application once again with the profile
4. You got your PGO-optimized app!

However, additionally you get …

11

12

… a bunch of additional issues!

● Double / triple compilation
● Think about profile regeneration, profile storage, profile update strategy
● Integrate PGO into your application / build system / CI properly
● Mitigate instrumentation overhead via even more complicated things like

Sampling PGO and Parca / Yandex.Perforator

13

https://www.parca.dev/
https://perforator.tech/

14

… a bunch of additional issues!

● Double / triple / even quadruple (!) compilation
● Think about profile regeneration, profile storage, profile update strategy, etc.
● Integrate PGO into your application / build system / CI properly
● Mitigate instrumentation PGO overhead via even more complicated things like

Sampling PGO and Parca / Yandex.Perforator

15

https://www.parca.dev/
https://perforator.tech/

Documentation

16

Books

17

Or in any other form

● (Unofficial) Rust Performance book
● min-sized-rust
● Project-specific optimization guidelines
● Various blogs with “Top 10 best practices” articles
● Reddit
● Youtube coding influencers
● “Awesome PGO” wall of text
● “Accessible Software Performance” talk

All of them have the same obvious issue…

18

https://nnethercote.github.io/perf-book/
https://github.com/johnthagen/min-sized-rust

Most people just don’t read/listen/watch them!

19

20

Application optimization guidelines

● ClickHouse
● Vector
● RHEL Performance guide

21

22

23

24

25

And even if they read documentation…

● Documentation doesn’t have really important details
○ That’s how “Awesome PGO” was created

26

27

And even if they read documentation…

● Documentation is outdated
● Documentation is outdated and you cannot figure it out

○ E.g. previous Clang FE PGO vs IR PGO recommendations

28

29

30

31

And even if they read documentation…

● Documentation is simply lying
○ “PGO doesn’t help SQLite” in official docs vs 10% performance improvement from PGO in the

official SQLite benches in practice

32

Tooling

33

How tooling can help us to unlock performance?

● Automate “best practice” integration into applications
● Convenient benchmarking
● Automate optimization routines
● Profilers with good vizualizations

34

Example: creating a new application from a template

● We can try to integrate recommended optimizations into templates, and
create new apps from these templates

● Some examples:
○ Ratatui: templates via cargo-generate (merged!)
○ Tauri: create-tauri-app (open issue)
○ Dioxus: dioxus-template via the dx tool (open issue)

● However, this way still has issues:
○ People don’t use project generators for various reasons (copy&paste, lack of knowledge, LLM)
○ Already created applications are not covered anyway (e.g. Ratatui case)

35

https://ratatui.rs/templates/
https://cargo-generate.github.io/cargo-generate/
https://github.com/tauri-apps/create-tauri-app/issues/945
https://github.com/DioxusLabs/dioxus-template/issues/87

Example: Benchmarking in Rust vs C++

● Benchmarking is needed to measure performance improvements
● Good example: cargo bench in Rust
● Bad example: <blank> in C++

○ What to use by default? Probably Google Benchmark…
○ How to install Google Benchmark? Conan, Vcpkg, system deps…
○ How to run the benchmark? Check build scripts / README / whatever

36

https://doc.rust-lang.org/cargo/commands/cargo-bench.html

37

Example: Post-Link Optimization (PLO)

● TL;DR: PLO = PGO on steroids
● Enables even more optimizations like function reorder, hot/cold split, etc.
● Available open-source tools at the moment:

○ LLVM BOLT - the most popular PLO tool nowadays
○ Google Propeller
○ Intel Thin Layout Optimizer (TLO) - RIP

38

https://github.com/llvm/llvm-project/blob/main/bolt/README.md
https://github.com/google/llvm-propeller
https://github.com/intel/thin-layout-optimizer

39

Example: PGO + PLO with cargo-pgo in Rust

40

https://github.com/Kobzol/cargo-pgo

Example: PGO + PLO manually in C++

1. Pass proper PGO compiler flags into your build scripts
2. Build
3. Run
4. Collect PGO profiles
5. Convert them in a proper format
6. Recompile your app once again with a different PGO flag
7. Figure out how to run LLVM BOLT
8. Instrument your binary from the the step 6 with BOLT
9. Run the new binary once again

10. Optimize binary with a different BOLT command

41

Issues with extra tooling

● People don’t know about these tools
● Tools are not easy to install:

○ No prebuilt package in a repository (LLVM BOLT case)
○ No easy way to build tool on your own (Google AutoFDO, Google Propeller, BOLT before

LLVM)
● All the same issues with documentation :)

42

Defaults

43

Why defaults are so important?

Defaults will be used by most users.

Defaults will be the most impactful on the ecosystem.

44

Changing defaults is hard!

According to the Hyrum's law:

45

https://www.hyrumslaw.com/

Example: the Rust ecosystem - good examples

● Using LLD linker on Linux by default

46

https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/

47

48

Example: the Rust ecosystem - good examples

● Using LLD linker on Linux by default
● Building Rustc and Rust Analyzer with LTO/PGO/PLO by default
● Using Jemalloc for Clippy
● strip = “debuginfo” in Release by default

49

https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/
https://github.com/rust-lang/rust-analyzer/pull/19582
https://github.com/rust-lang/rust/pull/142286
https://kobzol.github.io/rust/cargo/2024/01/23/making-rust-binaries-smaller-by-default.html

Example: cargo install in Rust

● De facto a default way to install Rust-based binaries
● Gentoo-style: compiling a binary on a target machine
● With the same tradeoffs:

○ Pros: you can optimize for your hardware (like CPU-specific instruction set)
○ Cons: you have more limitations for “expensive” optimizations like LTO

● Prebuilt binaries exist - cargo binstall - but are not that popular

50

https://github.com/cargo-bins/cargo-binstall

Example: dist (aka cargo-dist)

● Probably the most popular tool for preparing Release binaries in Rust

51

https://github.com/axodotdev/cargo-dist
https://axodotdev.github.io/cargo-dist/

52

Example: an idea about LTO for Rust by default

● Bring the LTO benefits for the whole Rust ecosystem at once
○ Luckily, LTO in Rust is much safer to enable compared to C++

53

Example: RHEL Performance guide

TODO: quickly explain what it is and how it can be improved

54

Example: an idea about LTO for Rust by default

● Not only for Rust but for dependent ecosystems too like Rust-based Python
packages with maturin (and other deps)

● There are multiple issues here:
○ People use Relese profile during the development phase

55

https://github.com/PyO3/maturin/issues/1529

56

57

58

59

60

61

More ideas!

● Advent of Compiler Optimizations from Matt Godbolt - what about other
optimization domains?

○ E.g. “Advent of ClickHouse optimizations”, huh?
● Performance challenges database from real open-source project

○ Like 1BRC but real challenges for real workloads.
○ “1 billion requests challenge for Nginx”? :)

● Pushing faster tools by default
○ Like grep -> ripgrep

● "Software Performance" devroom at FOSDEM ← you are sitting here!

62

https://xania.org/202511/advent-of-compiler-optimisation
https://godbolt.org/
https://github.com/gunnarmorling/1brc
https://github.com/BurntSushi/ripgrep

Software Performance nicely complements FOSDEM

● Language-specific devrooms like Rust, Go (even Python ;)
● Compiler devrooms like GCC and LLVM
● Domain-specific performance achievements from HPC, Big Data & Data

Science, Databases, SDS, Bioinformatics, etc.
● Delivering performance improvements with Package management, Nix, and

Distributions

63

All my work is actually about the same thing

● “Awesome PGO” project
○ An attempt to make PGO benefits more accessible for users

● It’s “Awesome LTO” spin-off
○ An attempt to make LTO benefits more accessible for the Rust ecosystem

● “Software Performance devroom”
○ An attempt to make rapid software more accessible for everyone

And I hope that it’s only the beginning.

64

Thank you! Questions?
65

● Emails:
○ zamazan4ik@tut.by (primary)
○ zamazan4ik@gmail.com (secondary)

● Matrix: @zamazan4ik:matrix.org
● Telegram: zamazan4ik
● Discord: zamazan4ik
● GitHub / GitLab / Codeberg: zamazan4ik

