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Few words about me
● Used to be a C++ engineer (now my C++ 

skills are Rust-y ;)
● Spent several years on “hacking” LLVM 

compiler/static analyzers/C++ standard library 
(libc++), etc.

● Awesome PGO author
● “Software Performance” devroom organizer 

(you are sitting here ;)
● Interested in data-driven software 

optimizations
● Like rapid software!
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https://github.com/zamazan4ik/awesome-pgo


What do we usually hear about performance?

● Various benchmark reports
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Example: TechEmpower “benches”
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What do we usually hear about performance?

● Various benchmark reports
● Engineering blogs like "We’ve rewrote smth in Rust and now our performance 

is blazing fast!"
● Hardcore / low-level stuff about performance optimizations
● Academy papers about various performance-related stuff like a new algorithm 

for something (e.g. the simd-json paper)

But one point is frequently missed...
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https://lemire.me/en/publication/arxiv190208318/


How accessible to you is yet 
another performance win?
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Which improvement is easier to use and why?

OR
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Compilers, their compilation models, 
and data-driven optimizations
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AOT vs JIT in workload-specific optimizations

● In JIT in most cases it "just works"
● In AOT world it's called PGO. And it needs to be integrated separately
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Is PGO that important?
Application Improvement

Rustc up to +15% compilation speed

Vector +15% EPS

Rust Analyzer +20% speedup

PostgreSQL up to +15% faster queries

SQLite up to 20% faster queries

ClickHouse up to +13% QPS

MySQL up to +35% QPS

MongoDB up to 2x faster queries

Redis up to +70% RPS

Library Improvement

serde_json ~15% improvement

xml-rs ~35% improvement

quick-xml ~25% improvement

tonic ~10% improvement

rustls ~6% improvement

axum ~10% improvement

tantivy ~30% improvement

wgpu ~25% improvement

tracing libs ~35-40% improvement
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To enable PGO you need…

1. Compile your application with instrumentation
2. Run on a target workload and collect a profile
3. Recompile your application once again with the profile
4. You got your PGO-optimized app!

However, additionally you get …
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… a bunch of additional issues!

● Double / triple compilation
● Think about profile regeneration, profile storage, profile update strategy
● Integrate PGO into your application / build system / CI properly
● Mitigate instrumentation overhead via even more complicated things like 

Sampling PGO and Parca / Yandex.Perforator
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https://www.parca.dev/
https://perforator.tech/
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… a bunch of additional issues!

● Double / triple / even quadruple (!) compilation
● Think about profile regeneration, profile storage, profile update strategy, etc.
● Integrate PGO into your application / build system / CI properly
● Mitigate instrumentation PGO overhead via even more complicated things like 

Sampling PGO and Parca / Yandex.Perforator
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https://www.parca.dev/
https://perforator.tech/


Documentation
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Books
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Or in any other form

● (Unofficial) Rust Performance book
● min-sized-rust
● Project-specific optimization guidelines
● Various blogs with “Top 10 best practices” articles
● Reddit
● Youtube coding influencers
● “Awesome PGO” wall of text
● “Accessible Software Performance” talk

All of them have the same obvious issue…
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https://nnethercote.github.io/perf-book/
https://github.com/johnthagen/min-sized-rust


Most people just don’t read/listen/watch them!
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Application optimization guidelines

● ClickHouse
● Vector
● RHEL Performance guide
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And even if they read documentation…

● Documentation doesn’t have really important details
○ That’s how “Awesome PGO” was created
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And even if they read documentation…

● Documentation is outdated
● Documentation is outdated and you cannot figure it out

○ E.g. previous Clang FE PGO vs IR PGO recommendations
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And even if they read documentation…

● Documentation is simply lying
○ “PGO doesn’t help SQLite” in official docs vs 10% performance improvement from PGO in the 

official SQLite benches in practice
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Tooling
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How tooling can help us to unlock performance?

● Automate “best practice” integration into applications
● Convenient benchmarking
● Automate optimization routines
● Profilers with good vizualizations
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Example: creating a new application from a template

● We can try to integrate recommended optimizations into templates, and 
create new apps from these templates

● Some examples:
○ Ratatui: templates via cargo-generate (merged!)
○ Tauri: create-tauri-app (open issue)
○ Dioxus: dioxus-template via the dx tool (open issue)

● However, this way still has issues:
○ People don’t use project generators for various reasons (copy&paste, lack of knowledge, LLM)
○ Already created applications are not covered anyway (e.g. Ratatui case)
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https://ratatui.rs/templates/
https://cargo-generate.github.io/cargo-generate/
https://github.com/tauri-apps/create-tauri-app/issues/945
https://github.com/DioxusLabs/dioxus-template/issues/87


Example: Benchmarking in Rust vs C++

● Benchmarking is needed to measure performance improvements
● Good example: cargo bench in Rust
● Bad example: <blank> in C++

○ What to use by default? Probably Google Benchmark…
○ How to install Google Benchmark? Conan, Vcpkg, system deps…
○ How to run the benchmark? Check build scripts / README / whatever
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https://doc.rust-lang.org/cargo/commands/cargo-bench.html


37



Example: Post-Link Optimization (PLO)

● TL;DR: PLO = PGO on steroids
● Enables even more optimizations like function reorder, hot/cold split, etc.
● Available open-source tools at the moment:

○ LLVM BOLT - the most popular PLO tool nowadays
○ Google Propeller
○ Intel Thin Layout Optimizer (TLO) - RIP
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https://github.com/llvm/llvm-project/blob/main/bolt/README.md
https://github.com/google/llvm-propeller
https://github.com/intel/thin-layout-optimizer
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Example: PGO + PLO with cargo-pgo in Rust
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https://github.com/Kobzol/cargo-pgo


Example: PGO + PLO manually in C++

1. Pass proper PGO compiler flags into your build scripts
2. Build
3. Run
4. Collect PGO profiles
5. Convert them in a proper format
6. Recompile your app once again with a different PGO flag
7. Figure out how to run LLVM BOLT
8. Instrument your binary from the the step 6 with BOLT
9. Run the new binary once again

10. Optimize binary with a different BOLT command

41



Issues with extra tooling

● People don’t know about these tools
● Tools are not easy to install:

○ No prebuilt package in a repository (LLVM BOLT case)
○ No easy way to build tool on your own (Google AutoFDO, Google Propeller, BOLT before 

LLVM)
● All the same issues with documentation :)
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Defaults
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Why defaults are so important?

Defaults will be used by most users.

Defaults will be the most impactful on the ecosystem.
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Changing defaults is hard!

According to the Hyrum's law:
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https://www.hyrumslaw.com/


Example: the Rust ecosystem - good examples

● Using LLD linker on Linux by default
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https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/
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Example: the Rust ecosystem - good examples

● Using LLD linker on Linux by default
● Building Rustc and Rust Analyzer with LTO/PGO/PLO by default
● Using Jemalloc for Clippy
● strip = “debuginfo” in Release by default
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https://blog.rust-lang.org/2025/09/01/rust-lld-on-1.90.0-stable/
https://github.com/rust-lang/rust-analyzer/pull/19582
https://github.com/rust-lang/rust/pull/142286
https://kobzol.github.io/rust/cargo/2024/01/23/making-rust-binaries-smaller-by-default.html


Example: cargo install in Rust

● De facto a default way to install Rust-based binaries
● Gentoo-style: compiling a binary on a target machine
● With the same tradeoffs:

○ Pros: you can optimize for your hardware (like CPU-specific instruction set)
○ Cons: you have more limitations for “expensive” optimizations like LTO

● Prebuilt binaries exist - cargo binstall - but are not that popular
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https://github.com/cargo-bins/cargo-binstall


Example: dist (aka cargo-dist)

● Probably the most popular tool for preparing Release binaries in Rust
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https://github.com/axodotdev/cargo-dist
https://axodotdev.github.io/cargo-dist/
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Example: an idea about LTO for Rust by default

● Bring the LTO benefits for the whole Rust ecosystem at once
○ Luckily, LTO in Rust is much safer to enable compared to C++
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Example: RHEL Performance guide

TODO: quickly explain what it is and how it can be improved
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Example: an idea about LTO for Rust by default

● Not only for Rust but for dependent ecosystems too like Rust-based Python 
packages with maturin (and other deps)

● There are multiple issues here:
○ People use Relese profile during the development phase
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https://github.com/PyO3/maturin/issues/1529
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More ideas!

● Advent of Compiler Optimizations from Matt Godbolt - what about other 
optimization domains?

○ E.g. “Advent of ClickHouse optimizations”, huh? 
● Performance challenges database from real open-source project

○ Like 1BRC but real challenges for real workloads.
○ “1 billion requests challenge for Nginx”? :)

● Pushing faster tools by default
○ Like grep -> ripgrep 

● "Software Performance" devroom at FOSDEM ← you are sitting here!
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https://xania.org/202511/advent-of-compiler-optimisation
https://godbolt.org/
https://github.com/gunnarmorling/1brc
https://github.com/BurntSushi/ripgrep


Software Performance nicely complements FOSDEM 

● Language-specific devrooms like Rust, Go (even Python ;)
● Compiler devrooms like GCC and LLVM
● Domain-specific performance achievements from HPC, Big Data & Data 

Science, Databases, SDS, Bioinformatics, etc.
● Delivering performance improvements with Package management, Nix, and 

Distributions
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All my work is actually about the same thing  

● “Awesome PGO” project
○ An attempt to make PGO benefits more accessible for users

● It’s “Awesome LTO” spin-off
○ An attempt to make LTO benefits more accessible for the Rust ecosystem

● “Software Performance devroom”
○ An attempt to make rapid software more accessible for everyone

And I hope that it’s only the beginning.
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Thank you! Questions?
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● Emails:
○ zamazan4ik@tut.by (primary)
○ zamazan4ik@gmail.com (secondary)

● Matrix: @zamazan4ik:matrix.org
● Telegram: zamazan4ik
● Discord: zamazan4ik
● GitHub / GitLab / Codeberg: zamazan4ik


