Writing a network-capable BootROM
for RISC-V prototype bring-up

Nick Kossifidis <mick@ics.forth.gr>
Antony Chazapis <chazapis@ics.forth.gr>
CARV@ICS/FORTH

mailto:mick@ics.forth.gr
mailto:chazapis@ics.forth.gr

How it all started...

Horror stories from prototype bring up at FORTH
* During integration / design phase (FPGA)

* Unimplemented extensions (e.g. no FPU) on RISC-V cores
. Buggy RISC-V implementations
Compressed instructions + alignment
. Atomics + alignment
. Misbehaving MMUs
. Misbehaving / non-compliant VPU
. Misbehaving branch predictor (on Ariane, submitted a bug

fix)
. Misbehaving / non-compliant wfi
. ... sky is the limit

* Various integration issues / misbehaving IPs
. Mixed up interrupt lines
J ... sky is the limit

* Moving on to ASIC
* A part of the toolchain “optimized out” a part of our NoC
* Timing issues, esp. related to high speed links

e At the PCB level

* Misplacement of connectors
°* Reversed / mixed-up traces

How it all started...

* All these issues survived the hw validation / verification process

 The longer they survive the development process, the higher the cost of fixing them
(even worse than sw use cases, especially after tape oug
* We need more and better tests !

* More flexible code that could work asap, even without core extensions or IPs
being present

* Progressively more complex to increase test coverage

* As efficient / small / focused as possible so that they can also be used under
simulation during hw validation (e.g. verilator)

* Able to run in an already broken setup (e.g. salvage what we can post-silicon, to
provide as much feedback as possible to the hw team)

e Able to run in a constrained environment liustrative cost-to-fix curve for hardware bugs

104 10000x

1000

e
<

100%- -

—
o
N

(illustrative multipliers)

Relative cost to fix (log scale)

,_.
A

100} 2 ~

Design Verification Post-silicon Tape-out Field
(pre-RTL) (sim/FPGA) (Bring-up) (Mask spin) (Deployment)

BareMetal SDK

* |t made sense to create a common sw infrastructure
 As it evolved we ended up using it for other things too...

* Developed as a side project since 2019

* Platform layer

Harts + 16650 UART + (A)CLINT + (A)PLIC + IMSIC
Sparse hart ids with / without boot lottery

A hack to support rom/ram being far away without -mcmodel=large

From peripheral addresses and hart infos to linker script generation

e Yalibc

BareMetal SDK - The pain

e Weird memory layouts from the hw team
o E.g. ram is too far away from rom
m PC-relative addressing won’t work
m GP-relative is limited to 4KB for .data/.bss
m Large memory model not yet ratified
e Itincreases binary size by storing lots of symbols
e |t stores them in .text instead of .rodata !
e Flexibility for prototypes that are still WiP
o For example maybe not all atomic ops are available
o Or maybe there is no PLIC/CLINT etc yet
o Or we may have some quirks etc
e Size constrained since BootROM consumes chip area (also on FPGASs)
o And you need to write everything from the hart’s first instruction
o Compiler optimization passes fighting each other

BareMetal SDK - The joy

e FULL CONTROL!!!
e Much simpler/cleaner code than e.g. having to follow multiple
abstraction layers on an OS environment designed to be multi-arch.
e RISC-V specs are not that complicated to follow (especially if you are
involved in the process).
o E.g. implementing bare metal drivers for (A)CLINT/(A)PLIC/IMSIC, or
trap handling was straight forward.
e Great opportunity to stretch your skills, experiment, and learn new stuff.
e In case you get to work with students, it can be a great teaching tool.

NetBOOT - A real-life production use case

e |t’s easier to have network than storage early on
o You can add a NIC in your FPGA design and go outside
o You can’t add a persistent flash
o No need for eMMC/SD/AHCI etc, just mmio/dma access
e There are very simple network interfaces to play with
o E.g. Xilinx emacilite.
o We have our own 1Gb one with the same programming interface as
Xilinx AXI DMA and our own MAC.
e You can do everything !
o Fetch boot images to get FSBL/Kernel/DTB etc.
o Access system via ssh.
o Mount rootfs over NFS and e.g. boot Redhat Enterprize / Ubuntu
o Access the internet, or other hosts (in our case play with MPI etc).

NetBOOT - A real-life production use case

e Networking stuff:
o Simple ethernet abstraction, without interrupts.
m Xilinx emaclite
m Our own AXI-DMA NIC
m VirtlO-net (so that it works with QEMU virt machine)
Tiny network stack on top (IPv4/UDP/ARP)
DHCP with support for some useful options
o TFTP with blocksize/lwindowsizel/tsize negotiation and blocknum
wraparound
e Image parser:
o Image container format with support for multiple partitions/image
types/system units.
o Simple integrity checks for now, but signature/secure boot support
is also part of the plan.
o LZ4 decompressor

NetBOOT - A real-life production use case

e Code size (initial public release):

(©)

O O O O O O O

©)

Emaclite driver -> 250loc
Our NIC driver -> 320loc
VirtlO-net driver -> 413loc
Net -> 430loc

DHCP -> 868loc

TFTP -> 336loc

LZ4 -> 91loc

Image parser -> 282loc
Main (wrapper) -> 45loc

e Binary size:

(@)
(@)

32K with debugging + ANSI colors etc
Much less if | remove debugging / colors and add -Os in the mix (but
-Os sometimes breaks things). Best case ~20-24K in previous tests.

NetBOOT - A real-life production use case

e What to do with the remaining ~8-10K...
o Secure boot using Caliptra RTM
m Image parser is ready for it, I’'ll need some more ram to store
the public key to pass to Caliptra, and some code space if |
decide to do the SHA384 myself instead of using Caliptra.
o Add support for flash (e.g. over SPlI/leMMC)
e We’ll also spin up a version that does OpenDICE with built-in crypto (but
that won’t fit in 32K, I’ll probably go for 64K target).

Git repos...

We hope you find the whole thing fun and useful too:

Also let us know if you find any issues, or have any feedback to share.
Contributions are always welcome :-)

https://github.com/CARV-ICS-FORTH/BareMetal
https://github.com/CARV-ICS-FORTH/NetBoot

Questions ?

)
CloudSigma

RISER: RISC-V for cloud services

T

¥ COMPUTER SOENCE

Thank you for your attention.

Disclaimer:

“Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Health and Digital Executive Agency (HaDEA). Neither the
European Union nor the granting authority can be held responsible for them.”

Horizon Europe
2021-202

; GJ - - ARISCV

SUMMITEUROPE 2026

BOLOGNA | 8-12 JUNE, 2026 Palazzo dei Congressi 3

