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How it all started...

Horror stories from prototype bring up at FORTH
* During integration / design phase (FPGA)

*  Unimplemented extensions (e.g. no FPU) on RISC-V cores
. Buggy RISC-V implementations
Compressed instructions + alignment
. Atomics + alignment
. Misbehaving MMUs
. Misbehaving / non-compliant VPU
. Misbehaving branch predictor (on Ariane, submitted a bug

fix)
. Misbehaving / non-compliant wfi
. ... sky is the limit

*  Various integration issues / misbehaving IPs
. Mixed up interrupt lines
J ... sky is the limit

* Moving on to ASIC
* A part of the toolchain “optimized out” a part of our NoC
*  Timing issues, esp. related to high speed links

e At the PCB level

*  Misplacement of connectors
°* Reversed / mixed-up traces




How it all started...

* All these issues survived the hw validation / verification process

 The longer they survive the development process, the higher the cost of fixing them
(even worse than sw use cases, especially after tape oug
* We need more and better tests !

* More flexible code that could work asap, even without core extensions or IPs
being present

* Progressively more complex to increase test coverage

* As efficient / small / focused as possible so that they can also be used under
simulation during hw validation (e.g. verilator)

* Able to run in an already broken setup (e.g. salvage what we can post-silicon, to
provide as much feedback as possible to the hw team)

e Able to run in a constrained environment liustrative cost-to-fix curve for hardware bugs
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BareMetal SDK

* |t made sense to create a common sw infrastructure
 As it evolved we ended up using it for other things too...

* Developed as a side project since 2019

* Platform layer

Harts + 16650 UART + (A)CLINT + (A)PLIC + IMSIC
Sparse hart ids with / without boot lottery

A hack to support rom/ram being far away without -mcmodel=large

From peripheral addresses and hart infos to linker script generation

e Yalibc



BareMetal SDK - The pain

e Weird memory layouts from the hw team
o E.g. ram is too far away from rom
m PC-relative addressing won’t work
m GP-relative is limited to 4KB for .data/.bss
m Large memory model not yet ratified
e Itincreases binary size by storing lots of symbols
e |t stores them in .text instead of .rodata !
e Flexibility for prototypes that are still WiP
o For example maybe not all atomic ops are available
o Or maybe there is no PLIC/CLINT etc yet
o Or we may have some quirks etc
e Size constrained since BootROM consumes chip area (also on FPGASs)
o And you need to write everything from the hart’s first instruction
o Compiler optimization passes fighting each other



BareMetal SDK - The joy

e FULL CONTROL!!!
e Much simpler/cleaner code than e.g. having to follow multiple
abstraction layers on an OS environment designed to be multi-arch.
e RISC-V specs are not that complicated to follow (especially if you are
involved in the process).
o E.g. implementing bare metal drivers for (A)CLINT/(A)PLIC/IMSIC, or
trap handling was straight forward.
e Great opportunity to stretch your skills, experiment, and learn new stuff.
e In case you get to work with students, it can be a great teaching tool.



NetBOOT - A real-life production use case

e |t’s easier to have network than storage early on
o You can add a NIC in your FPGA design and go outside
o You can’t add a persistent flash
o No need for eMMC/SD/AHCI etc, just mmio/dma access
e There are very simple network interfaces to play with
o E.g. Xilinx emacilite.
o We have our own 1Gb one with the same programming interface as
Xilinx AXI DMA and our own MAC.
e You can do everything !
o Fetch boot images to get FSBL/Kernel/DTB etc.
o Access system via ssh.
o Mount rootfs over NFS and e.g. boot Redhat Enterprize / Ubuntu
o Access the internet, or other hosts (in our case play with MPI etc).



NetBOOT - A real-life production use case

e Networking stuff:
o Simple ethernet abstraction, without interrupts.
m  Xilinx emaclite
m  Our own AXI-DMA NIC
m VirtlO-net (so that it works with QEMU virt machine)
Tiny network stack on top (IPv4/UDP/ARP)
DHCP with support for some useful options
o TFTP with blocksize/lwindowsizel/tsize negotiation and blocknum
wraparound
e Image parser:
o Image container format with support for multiple partitions/image
types/system units.
o Simple integrity checks for now, but signature/secure boot support
is also part of the plan.
o LZ4 decompressor



NetBOOT - A real-life production use case

e Code size (initial public release):
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Emaclite driver -> 250loc
Our NIC driver -> 320loc
VirtlO-net driver -> 413loc
Net -> 430loc

DHCP -> 868loc

TFTP -> 336loc

LZ4 -> 91loc

Image parser -> 282loc
Main (wrapper) -> 45loc

e Binary size:

(@)
(@)

32K with debugging + ANSI colors etc
Much less if | remove debugging / colors and add -Os in the mix (but
-Os sometimes breaks things). Best case ~20-24K in previous tests.



NetBOOT - A real-life production use case

e What to do with the remaining ~8-10K...
o Secure boot using Caliptra RTM
m Image parser is ready for it, I’'ll need some more ram to store
the public key to pass to Caliptra, and some code space if |
decide to do the SHA384 myself instead of using Caliptra.
o Add support for flash (e.g. over SPlI/leMMC)
e We’ll also spin up a version that does OpenDICE with built-in crypto (but
that won’t fit in 32K, I’ll probably go for 64K target).



Git repos...

We hope you find the whole thing fun and useful too:

Also let us know if you find any issues, or have any feedback to share.
Contributions are always welcome :-)


https://github.com/CARV-ICS-FORTH/BareMetal
https://github.com/CARV-ICS-FORTH/NetBoot

Questions ?
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