
Writing a network-capable BootROM
for RISC-V prototype bring-up
Nick Kossifidis <mick@ics.forth.gr>
Antony Chazapis <chazapis@ics.forth.gr>
CARVICS/FORTH

mailto:mick@ics.forth.gr
mailto:chazapis@ics.forth.gr

How it all started…

Horror stories from prototype bring up at FORTH
• During integration / design phase (FPGA)

• Unimplemented extensions (e.g. no FPU) on RISC-V cores
• Buggy RISC-V implementations

• Compressed instructions + alignment
• Atomics + alignment
• Misbehaving MMUs
• Misbehaving / non-compliant VPU
• Misbehaving branch predictor (on Ariane, submitted a bug

fix)
• Misbehaving / non-compliant wfi
• … sky is the limit

• Various integration issues / misbehaving IPs
• Mixed up interrupt lines
• … sky is the limit

• Moving on to ASIC
• A part of the toolchain “optimized out” a part of our NoC
• Timing issues, esp. related to high speed links

• At the PCB level
• Misplacement of connectors
• Reversed / mixed-up traces

How it all started…

• All these issues survived the hw validation / verification process

• The longer they survive the development process, the higher the cost of fixing them
(even worse than sw use cases, especially after tape out)

• We need more and better tests !
• More flexible code that could work asap, even without core extensions or IPs

being present
• Progressively more complex to increase test coverage
• As efficient / small / focused as possible so that they can also be used under

simulation during hw validation (e.g. verilator)
• Able to run in an already broken setup (e.g. salvage what we can post-silicon, to

provide as much feedback as possible to the hw team)
• Able to run in a constrained environment

BareMetal SDK

• It made sense to create a common sw infrastructure
• As it evolved we ended up using it for other things too…

• Benchmarks
• Bootloaders (BootROM)
• Education !

• Developed as a side project since 2019
• On an as-needed basis
• Open Source using Apache 2.0 (not yet released)

• Platform layer
• Supports typical RISC-V SoCs

• Harts + 16650 UART + (A)CLINT + (A)PLIC + IMSIC

• Supports multiple harts
• Sparse hart ids with / without boot lottery

• Supports complex memory layouts
• A hack to support rom/ram being far away without -mcmodel=large

• Single header for hardware-specific configuration
• From peripheral addresses and hart infos to linker script generation

• Support for QEMU virt machine for reference
• Yalibc

• An attempt for a freestanding libc
• For now very minimal
• Another side-project

BareMetal SDK - The pain

● Weird memory layouts from the hw team
○ E.g. ram is too far away from rom

■ PC-relative addressing won’t work
■ GP-relative is limited to 4KB for .data/.bss
■ Large memory model not yet ratified

● It increases binary size by storing lots of symbols
● It stores them in .text instead of .rodata !

● Flexibility for prototypes that are still WiP
○ For example maybe not all atomic ops are available
○ Or maybe there is no PLIC/CLINT etc yet
○ Or we may have some quirks etc

● Size constrained since BootROM consumes chip area (also on FPGAs)
○ And you need to write everything from the hart’s first instruction
○ Compiler optimization passes fighting each other

● …

BareMetal SDK - The joy

● FULL CONTROL!!!
● Much simpler/cleaner code than e.g. having to follow multiple

abstraction layers on an OS environment designed to be multi-arch.
● RISC-V specs are not that complicated to follow (especially if you are

involved in the process).
○ E.g. implementing bare metal drivers for (A)CLINT/(A)PLIC/IMSIC, or

trap handling was straight forward.
● Great opportunity to stretch your skills, experiment, and learn new stuff.
● In case you get to work with students, it can be a great teaching tool.

NetBOOT - A real-life production use case

● It’s easier to have network than storage early on
○ You can add a NIC in your FPGA design and go outside
○ You can’t add a persistent flash
○ No need for eMMC/SD/AHCI etc, just mmio/dma access

● There are very simple network interfaces to play with
○ E.g. Xilinx emaclite.
○ We have our own 1Gb one with the same programming interface as

Xilinx AXI DMA and our own MAC.
● You can do everything !

○ Fetch boot images to get FSBL/Kernel/DTB etc.
○ Access system via ssh.
○ Mount rootfs over NFS and e.g. boot Redhat Enterprize / Ubuntu
○ Access the internet, or other hosts (in our case play with MPI etc).

NetBOOT - A real-life production use case

● Networking stuff:
○ Simple ethernet abstraction, without interrupts.

■ Xilinx emaclite
■ Our own AXI-DMA NIC
■ VirtIO-net (so that it works with QEMU virt machine)

○ Tiny network stack on top (IPv4/UDP/ARP)
○ DHCP with support for some useful options
○ TFTP with blocksize/windowsize/tsize negotiation and blocknum

wraparound
● Image parser:

○ Image container format with support for multiple partitions/image
types/system units.

○ Simple integrity checks for now, but signature/secure boot support
is also part of the plan.

○ LZ4 decompressor

NetBOOT - A real-life production use case

● Code size (initial public release):
○ Emaclite driver -> 250loc
○ Our NIC driver -> 320loc
○ VirtIO-net driver -> 413loc
○ Net -> 430loc
○ DHCP -> 868loc
○ TFTP -> 336loc
○ LZ4 -> 91loc
○ Image parser -> 282loc
○ Main (wrapper) -> 45loc

● Binary size:
○ 32K with debugging + ANSI colors etc
○ Much less if I remove debugging / colors and add -Os in the mix (but

-Os sometimes breaks things). Best case ~20-24K in previous tests.

NetBOOT - A real-life production use case

● What to do with the remaining ~8-10K…
○ Secure boot using Caliptra RTM

■ Image parser is ready for it, I’ll need some more ram to store
the public key to pass to Caliptra, and some code space if I
decide to do the SHA384 myself instead of using Caliptra.

○ Add support for flash (e.g. over SPI/eMMC)
● We’ll also spin up a version that does OpenDICE with built-in crypto (but

that won’t fit in 32K, I’ll probably go for 64K target).

Git repos…

We hope you find the whole thing fun and useful too:

https://github.com/CARV-ICS-FORTH/BareMetal

https://github.com/CARV-ICS-FORTH/NetBoot

Also let us know if you find any issues, or have any feedback to share.
Contributions are always welcome :-)

https://github.com/CARV-ICS-FORTH/BareMetal
https://github.com/CARV-ICS-FORTH/NetBoot

Questions ?

Thank you for your attention.

