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What is Erasure Coding?
°

What is Erasure coding

m A redundancy technique for storage systems — data protection
m Enabling storage efficiency, at the expense of incurring a computational overhead

m Split data in k chunks, use encoding to get n > k chunks (n — k redundant
chunks) — store across different locations
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m Importantly: considers transient and permanent failures, not errors

m Less redundancy than replication, but same reliability

m Application: production storage systems, e.g. cloud storage
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History
°

History

m 1960 paper " polynomial codes over certain finite fields” by Reed and Solomon
publish (telecommunication)

m 1980s Redundant Array of Independent/Inexpensive Disks (RAID)
m 2000s applied distributed storage systems and cloud computing
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RS-Code Fundamentals
.

Reed-Solomon-Code Fundamentals

Consider storing  |_helloworld’
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RS-Code Fundamentals
.

Reed-Solomon-Code Fundamentals

Consider storing  |_helloworld’

Split into k =5 chunks (same size)

"he [ fow or [1d]
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RS-Code Fundamentals
.

Reed-Solomon-Code Fundamentals

Consider storing  |_helloworld’

Split into k =5 chunks (same size)

he[ I Tow['or ['1d']

Encode with p(x) into n = 8 chunks (same size)

p(0){p(1)(p(2)|p(3)|p(4)|P(5)|p(5)|p(6)|pP(7)

8

Demystifying the Mathematics of Erasure Coding



RS-Code Fundamentals
.

Reed-Solomon-Code Fundamentals

Consider storing  |_helloworld’

Split into k =5 chunks (same size)

he[ I Tow['or ['1d']

Encode with p(x) into n = 8 chunks (same size)

p(0){p(1)(p(2)|p(3)|p(4)|P(5)|p(5)|p(6)|pP(7)

8

Can recover 'helloworld" from any 5 of the 8 chunks!
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RS-Code Fundamentals
.

Reed-Solomon-Code Fundamentals

Consider storing  |_helloworld’

Split into k =5 chunks (same size)

he[ I Tow['or ['1d']

Encode with p(x) into n = 8 chunks (same size)

p(0){p(1)(p(2)|p(3)|p(4)|P(5)|p(5)|p(6)|pP(7)

8

Can recover 'helloworld" from any 5 of the 8 chunks!

But what is p(x)? How do we recover?
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Polynomials Excursion
©000

Polynomials

A polynomial p(x) is a function
p(x) = ap + aix + x4+ 4 x<t

with real valued coefficients ag, a1, ..., ax_1 for a positive integer k.
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Polynomials Excursion
©000

Polynomials

A polynomial p(x) is a function
p(x) = ap + aix + x4+ 4 x<t
with real valued coefficients ag, a1, ..., ax_1 for a positive integer k.

Example

y p(x)=2x—1
p(x) = x
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Polynomials Excursion
0e00

Now approach a fundamental mathematical result by drawing polynomials through
points
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Polynomials Excursion
0e00

1. Look at one point and polynomials p(x) = ag

251

0.5+
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Polynomials Excursion
0e00

1. Look at one point and polynomials p(x) = ag

2.5 ¢
) b p(x) = 2 unique going through Al

0.5+
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Polynomials Excursion
0e00

2. Look at one point and polynomials p(x) = ag + a1x

25 |
p(x) = x

0.5+
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Polynomials Excursion
0e00

2. Look at one point and polynomials p(x) = ag + a1x

251

p(x) =1+ 0.5x

0.5+
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Polynomials Excursion
0e00

3. Look at two points and polynomials p(x) = ap + a1 x

p(x) = —2 + 2x unique going through

25 ¢ A and B
2 A
. 15
1+
0.5 1
B
0 : ® : : : :
0 0.5 1 1.5 2 2.5 3
X
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Polynomials Excursion
0e00

4. Look at two points and polynomials p(x) = ag + a1x + apx?

p(x) =2 — 4x + 2x2
p(x) = —3.5 4+ 4.25x — 0.75x>
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Polynomials Excursion
ocoeo

Observation

Observed that we need
m one point (xg, o) to uniquely determine p(x) = ap with p(x0) = yo,
m two points (X, ¥o) and (x1, y1) to uniquely determine p(x) = ag + aix with
p(x0) = yo and p(x1) = y1,
m three points (xg, yo) and (x1,y1) and (x2, y2) to uniquely determine
p(x) = a0 + aix + axx> with p(x0) = yo and p(x1) = y1 and p(x2) = y2,
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Polynomials Excursion
ocooe

Given coordinates (xo, o), - - -, (Xk—1, Yk—1) with distinct x-coordinates, there exists a

unique polynomial p(x) = ap + - - - + a—1x*"1 with p(x0) = yo, - - ., P(Xk—1) = Yk—1.
Equivalently:

Given k distinct points xg, ..., Xx_1, each polynomial p(x) = ag + - -+ + ax_1x 1 is
uniquely determined by its values p(x0) = Yo, -, P(Xk—1) = Yk—1-

But how does this help us — encoding p(x) is a polynomial defined through the k
chunks of our data. (details now)
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RS-Code cont.
©000000000

Encoding

m Data in kK = 5 chunks

he[ I Tow['or'['1d']

m Define the encoding p(x) as

p(x) = mo + myx + -+ my_yx<71

where m; is the number represented by the whole of chunk /. Meaning for our
example

m mgp = 26725 the decimal number of 'he’

m my = 27756 the decimal number of 'II

m m, = 28535 the decimal number of 'ow’

...
giving

p(x) = 26725 + 27756x + 28535x2 + 28530x> + 27748x*
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RS-Code cont.
0®00000000

p(x) = 26725 + 27756x + 28535x> + 28530x> + 27748x*

10-10° 4
106 | p(x)
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What do we do with the polynomial? And why did we need the mathematical result?
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RS-Code cont.
0080000000

Given k distinct points xg, ..., Xx_1, each polynomial p(x) = ag + - - - + ax_1x* 1 is
uniquely determined by its values p(x0) = yo, - - -, pP(Xk—1) = Yk—1-
We get that

p(x)=mg+---+ M1 x<71

can uniquely be restored by any k distinct coordinates
(%0, P(x0))s - - -+ (%ks P(Xk))-

Often choose x; =i for i=0,...,k—1: (0,p(0)), ..., (k, p(k))
which are:

(0,26725), (1,139294), (2, 868585), (3, 3384706), (4, 9523717)
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RS-Code cont.
0008000000

(0,26725), (1,139294),

—~

2,868585), (3,3384706), (4, 9523717)
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RS-Code cont.
0000800000

Redundancy

Don't just save k points of p(x) but n > k:

(0,26725), (1,139294), (2,868585), (3,3384706),
(4,9523717), (5,21787630), (6, 43344409), (7,78027970)

107
-107 p(x)
107
-107
107
-107
107
-107

—-7—-6-5-4-3-2-101 2 3 4 5 6 7

X
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RS-Code cont.
0000800000

Redundancy

Don't just save k points of p(x) but n > k:

(0,26725), (1,139294), (2,868585), (3,3384706),
(4,9523717), (5,21787630), (6, 43344400), (7,78027970)

— Distribute n points over different disks?

(0,26725) (7,78027970)

(2,868585)

(3,3384706) (5,21787630)
(1,139204) (4,9523717)

(6, 43344400)
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RS-Code cont.
0000080000

Decoding

(0,26725) (7,78027970)

(2,868585)

(3,3384706) (5,21787630)

(6, 43344400)

m Any k =5 points — uniquely solvable system of linear equations

Demystifying the Mathematics of Erasure Coding



(0,26725)
)

(3,3384706)] (5, 21787630

(1,139294) s (4,9523717)
(6, 43344409) \—VL‘

m Any k =5 points — uniquely solvable system of linear equations
For instance, if nodes 1, 5 & 7 fail — recover from 0,2,3,4 & 6:
p(0) =mo+0 +0 +0 +0 = 26725
p(2) = mo+my -2+ my-2° 4+ ms-2° + m, - 2* = 868585
p(3) =mo+ my -3+ my-3° 4 ms-3>+ my - 3* = 3384706
p(4) = mo + my -4+ my - 4% + m3 - 4> + my - 4* = 9523717
p(6) = mo+ my -6+ my - 6%+ ms- 6> + m, - 6* = 43344409

— Recover the coefficients myg, ..., m4, i.e. the data
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RS-Code cont.
0000000800

Problem (and why this was not 100% Erasure Coding)

Problem: for example, value

p(4) = 9523717 = (1001 0001 0101 001000000101),

24 bits, instead of 16 bits.
Solution: work with Galois fields GF(21°) (Reed-Solomon-Codes)

m Restrict to 16-bit chunks — integers 0,1, ...,2'% — 1 for coefficients AND values
p(x)

m Different computation (— see Galois fields)

m The result of uniqueness of polynomial still holds — uniquely recover data
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RS-Code cont.
0000000080

Properties of Reed-Solomon-Codes 1/2

m Tolerate n — k node failures

m Storage-optimal: can reconstruct data from any k out of n chunks with the
minimum storage redundancy n/k

m E.g. Google Colossus (9,6) redundancy 1.5,
m And facebook f4 (14,10) redundancy 1.4

m Can choose any (n, k) (with k < n and n < 2™ with m the size of the chunks)
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RS-Code cont.
0000000008

Properties of Reed-Solomon-Codes 2/2

Call the collection of n encoded chunks a stripe

m Scalable storage: split each of the k chunks into g chunks and encode the g
stripes independently
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m Can configure in systematic form: the n chunks are the k original chunks together
with n — k parity chunks
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More Erasure Codes
°

More Erasure Codes

Overhead in repair and updates

Regenerating codes (minimize repair bandwidth)

Local Reconstruction codes (e.g. deployed by Microsoft Azure)
SD-codes (disk and sector failures)

RAID (array of disks)

Low-density parity-check codes (SSDs)
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References

Contact: gerlind@deschner.de

Thank you for your attention!
Are there any questions?
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