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Control?



Firefox QUIC Congestion Control — What is this talk about?

What is Congestion Control?

e Algorithmically finding ideal send rate
e Nego implements RFC 9438 — CUBIC

e Additive increase and multiplicative decrease
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https://datatracker.ietf.org/doc/html/rfc9438

Firefox QUIC Congestion Control — What is this talk about?

Another Building Block: Slow Start

UUUUUUUU

30000K
20000K

10000K

0 2,000 4,000

C



Firefox QUIC Congestion Control — qvis shoutout

Interlude:
Shoutout to qvis

Great tool to interactively
visualize glogs!

All Congestion Window plots in this
presentation are screen captures from
https://gvis.quictools.info/

Give them a star on
https://dithub.com/quiclog/qvis

Manage files

qglog stats.

Welcome to qvis v0.1, the QUIC and HTTP/3 visualization toolsuite!

Option 1

Option 2

Option 3

Option 4

Option 5

To be able to visualize something, you need to load some data. We have several options for that:

Load a file by URL

https://www.example.com/output.qlog

You can load .glog, .sqlog, .netlog, .pcap (alongside separate .keys) and .pcapng (with embedded keys) files.
You can also load a .json file that lists several other files to be fetched (for the format, see the pcap2qlog
documentation. Or try an example).

If you're looking for inspiration, quant has public glogs, as does aioquic.

QUIC Tracker provides .pcap files for all its tests and has a convenient integration with qvis from its Ul
Many of the tests in the QUIC Interop Runner also include .qlog and .pcap output.

Upload a file

[

Upload currently supports .log, .sqlog, json, and .netlog files. No data is transfered to the server.

‘ Chowse files ordrofs thar here:

Eventually we will also support .pcap, -pcapng and .qr files.

Note: Chrome netlog must be explicitly given the .netlog extension before uploading to quis.

Load some premade demo files

Load example .qlog files

This will load a few example files that you can visualize to get an idea of what's possible.

Load a massive demo file

Load 31MB .qglog file

This will load a single glog file representing a 100MB download. Use this to see how well qvis visualizations
perform on larger traces.

Load a file by URL parameter

You can pass files you want to load via URL parameters to the qvis page.
This method supports the same formats as Option 1

Format 1: ?list=x.json

Format 2: ?file=x.qlog

Format 3: ?file=x.pcap&secrets=x keys

Format 4: ?file1=x.qlog&file2=y.qlog&file3=z.qlog

Format 5: ?file1=x.qlog&secrets1=x keys&file2=y.qlog&secrets2=y.keys


https://qvis.quictools.info/
https://github.com/quiclog/qvis

Spurious Congestion
Event Recovery



Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Going back to FOSDEM 2024

e Manuel Bucher (today @ Firefox Privacy) held a talk
"H3 upload speed” where he showed this graph:
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https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1873-debugging-http-3-upload-speed-in-firefox/

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Spurious Loss
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Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Spurious Loss

e Leads to Spurious Congestion Events

e Window is reduced despite there not being real
congestion

e Heavy and unnecessary performance degradation

e RFC 9348 section 4.9.2 suggests a mechanism for

detection and recovery

C


https://datatracker.ietf.org/doc/html/rfc9438#section-4.9.2

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Implementation

e First implemented the detection logic and exposed
metrics to gauge impact

e ~5% of connections see Spurious Congestion
Events, but those that see them see a lot of them

e Recovery merged in #3298 and is now in Firefox
Nightly 149

— |let's look at some measurements!

C
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https://github.com/mozilla/neqo/pull/3298

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery
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Firefox QUIC Congestion Control — Spurious Congestion Event Recovery
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Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Measurements

With recovery patch ~7s completion time
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Firefox QUIC Congestion Control — Spurious Congestion Event Recovery
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Firefox QUIC Congestion Control — Spurious Congestion Event Recovery
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Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

C

Measurements

e \We see strong anecdotal evidence and signal from
micro-benchmarks

e But what about real world data?

e High level metrics very noisy due to heterogeneous
environments

e So especially changes like this one that only apply to

some subset of users are hard to see in metrics

16



Alternative Backoff
with ECN



Firefox QUIC Congestion Control — Alternative Backoff with ECN

What is ECN?

e Explicit Congestion Notification (REC 3168)

e Adjust rate without relying on packet loss as a signal

e Middlebox notifies sender if queue buildup starts by
setting IP header value

e BUT path has to be capable of marking and passing
along ECN signal

C
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https://www.rfc-editor.org/rfc/rfc3168

Firefox QUIC Congestion Control — Alternative Backoff with ECN

State of ECN
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https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_ecn_path_capability/explore?activeBuckets=%5B%22capable%22%2C%22bleaching%22%2C%22black-hole%22%2C%22received-unsent-ect-1%22%5D&app_id=beta&timeHorizon=ALL
https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_ecn_path_capability/explore?activeBuckets=%5B%22capable%22%2C%22bleaching%22%2C%22black-hole%22%2C%22received-unsent-ect-1%22%5D&app_id=beta&timeHorizon=ALL

Firefox QUIC Congestion Control — Alternative Backoff with ECN

C

Alternative Backoff with ECN

e Usually ECN triggers the same window reduction as
loss

e RFC 8511 suggests using a smaller decrease

because ECN is an earlier signal than loss
e This would lead to higher overall utilization
e Looked good in simulations and merged in #3233

e But again, how does it behave in reality?

20


https://www.rfc-editor.org/rfc/rfc8511.html
https://github.com/mozilla/neqo/pull/3233

Firefox QUIC Congestion Control — Alternative Backoff with ECN

Analysis

e As usual, higher level metrics are too noisy
e Lower level metrics could have been influenced by
other things bundled into the Neqo release

e Makes it hard to isolate feature impact

C
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Firefox QUIC Congestion Control — Alternative Backoff with ECN

State of ECN
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https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_congestion_event_reason/explore?activeBuckets=%5B%22loss%22%2C%22ecn-ce%22%5D
https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_congestion_event_reason/explore?activeBuckets=%5B%22loss%22%2C%22ecn-ce%22%5D

How to fix the data
problem?



Firefox QUIC Congestion Control — How to fix the data problem?

Specialized metrics

e High level metrics with a built-in filter
e E.g.throughput for connections that see at least one

spurious congestion event

- “see a% throughput increase for connections that see

spurious loss, which is b% of connections”

C
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Firefox QUIC Congestion Control — How to fix the data problem?

Run A/B experiments

e |solate features
e Needs code instrumentation and takes time to set up
and evaluate

e But gives most accurate signal

C
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What’s Next: Slow
Start Exit



Firefox QUIC Congestion Control — Slow Start Exit

The problem
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Firefox QUIC Congestion Control — Slow Start Exit

Worth optimizing?
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https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_slow_start_exited/explore?activeBuckets=%5B%22not_exited%22%2C%22exited%22%5D&app_id=beta&timeHorizon=ALL
https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_slow_start_exited/explore?activeBuckets=%5B%22not_exited%22%2C%22exited%22%5D&app_id=beta&timeHorizon=ALL

Firefox QUIC Congestion Control — Slow Start Exit

What's next

e Working on a research project to compare slow start

heuristics (HyStart++, SEARCH, maybe more) that
aim to exit without packet loss

e Taking learnings, designing specialized metrics and
scheduling time for experimentation

e Hopefully publish results in a paper to help advance
emerging standards like the SEARCH project with

real world data

C
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https://datatracker.ietf.org/doc/html/rfc9406
https://search-ss.wpi.edu/

Thank you!



Firefox QUIC Congestion Control

Questions?

e FOSDEM hallway

e Mail: omansfeld@mozilla.com

e Matrix: @omansfeld:mozilla.org

e Check out our data!

https://dlam.telemetry.mozilla.orq/

e Check out qvis! https://qvis.quictools.info/

C

31


mailto:omansfeld@mozilla.com
http://mozilla.org
https://glam.telemetry.mozilla.org/
https://qvis.quictools.info/

