(Q Firefox

The Fast and the
Spurious

Congestion Control Experimentation in Firefox’'s QUIC stack

2026-01-31 Oskar Mansfeld — FOSDE

What is Congestion
Control?

Firefox QUIC Congestion Control — What is this talk about?

What is Congestion Control?

e Algorithmically finding ideal send rate
e Nego implements RFC 9438 — CUBIC

e Additive increase and multiplicative decrease

m : Data sent (includes retransmits)
m : Data acknowledged
90000k | | um : Data lost

m : Connection flow control limit

m : Sum of stream flow control limits

Data (bytes)

C

so0k
V hox

700K(

nnnnn

m : Congestion window

m : Bytes in flight

20000

https://datatracker.ietf.org/doc/html/rfc9438

Firefox QUIC Congestion Control — What is this talk about?

Another Building Block: Slow Start

UUUUUUUU

30000K
20000K

10000K

0 2,000 4,000

C

Firefox QUIC Congestion Control — qvis shoutout

Interlude:
Shoutout to qvis

Great tool to interactively
visualize glogs!

All Congestion Window plots in this
presentation are screen captures from
https://gvis.quictools.info/

Give them a star on
https://dithub.com/quiclog/qvis

Manage files

qglog stats.

Welcome to qvis v0.1, the QUIC and HTTP/3 visualization toolsuite!

Option 1

Option 2

Option 3

Option 4

Option 5

To be able to visualize something, you need to load some data. We have several options for that:

Load a file by URL

https://www.example.com/output.qlog

You can load .glog, .sqlog, .netlog, .pcap (alongside separate .keys) and .pcapng (with embedded keys) files.
You can also load a .json file that lists several other files to be fetched (for the format, see the pcap2qlog
documentation. Or try an example).

If you're looking for inspiration, quant has public glogs, as does aioquic.

QUIC Tracker provides .pcap files for all its tests and has a convenient integration with qvis from its Ul
Many of the tests in the QUIC Interop Runner also include .qlog and .pcap output.

Upload a file

[

Upload currently supports .log, .sqlog, json, and .netlog files. No data is transfered to the server.

‘ Chowse files ordrofs thar here:

Eventually we will also support .pcap, -pcapng and .qr files.

Note: Chrome netlog must be explicitly given the .netlog extension before uploading to quis.

Load some premade demo files

Load example .qlog files

This will load a few example files that you can visualize to get an idea of what's possible.

Load a massive demo file

Load 31MB .qglog file

This will load a single glog file representing a 100MB download. Use this to see how well qvis visualizations
perform on larger traces.

Load a file by URL parameter

You can pass files you want to load via URL parameters to the qvis page.
This method supports the same formats as Option 1

Format 1: ?list=x.json

Format 2: ?file=x.qlog

Format 3: ?file=x.pcap&secrets=x keys

Format 4: ?file1=x.qlog&file2=y.qlog&file3=z.qlog

Format 5: ?file1=x.qlog&secrets1=x keys&file2=y.qlog&secrets2=y.keys

https://qvis.quictools.info/
https://github.com/quiclog/qvis

Spurious Congestion
Event Recovery

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Going back to FOSDEM 2024

e Manuel Bucher (today @ Firefox Privacy) held a talk
"H3 upload speed” where he showed this graph:

000000

000000

222222

2
sssssss
g

000000

000000

000000

https://archive.fosdem.org/2024/schedule/event/fosdem-2024-1873-debugging-http-3-upload-speed-in-firefox/

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Spurious Loss

..ﬂ’
®oe

...'.
~...

....
®os,

.uoo.oo...‘o...

©

®eoo

%o

e -

%0,

packet_sent
packet ack
packet_lost

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Spurious Loss

e Leads to Spurious Congestion Events

e Window is reduced despite there not being real
congestion

e Heavy and unnecessary performance degradation

e RFC 9348 section 4.9.2 suggests a mechanism for

detection and recovery

C

https://datatracker.ietf.org/doc/html/rfc9438#section-4.9.2

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Implementation

e First implemented the detection logic and exposed
metrics to gauge impact

e ~5% of connections see Spurious Congestion
Events, but those that see them see a lot of them

e Recovery merged in #3298 and is now in Firefox
Nightly 149

— |let's look at some measurements!

C

10

https://github.com/mozilla/neqo/pull/3298

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Data (bytes)

C

50000K

45000K

40000K

35000K

30000K

25000K

20000K

15000K

10000K

5000K

Measurements

No spurious congestion events ~7s completion time

11000K
m : Data sent (includes retransmits)
m : Data acknowledged 10000K
m : Data lost
9000’%
m : Connection flow control limit _‘é.
. 8000
m : Sum of stream flow control limits 32_’
c
70009
-]
w
Q
o
6[}008
O
5000K
4000K
3000K
200
m : Congestion window
100f . .
m : Bytes in flight

0

1,000 2,000 3,000 4,000 5,000 6,000 7,000

Time (ms)

11

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

50000K

45000K

40000K

35000K

30000K

Data (bytes)

25000K

20000K

15000K

10000K

5000K

Measurements

Spurious congestion events ~13s completion time

: Data sent (includes retransmits)
: Data acknowledged

: Data lost

: Connection flow control limit

: Sum of stream flow control limits

¢

T 7000 2,000 3,000 4,000 5,000 6,000 7,000

Time (ms)

800K

g
ES

fo (Eytes)

ion in

500K,

’tongest

400

300K

200K

100/ ™ : Congestion window

m : Bytes in flight

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Measurements

With recovery patch ~7s completion time

m : Data sent (includes retransmits)
50000K

m : Data acknowledged

45000K| | umy : Data lost

m : Connection flow control limit
40000K

: Sum of stream flow control limits

35000K

30000K

Data (bytes)

25000K

20000K

15000K

10000K

5000K

1] 1,000 2,000 3,000 4,000 5,000

Time (ms)

¢

6,000

7,000

5500K
5000K
4500’%

>
Q
400018

n inf

35000

30001

Congesti

2500K

2000K

1500K

m : Congestion window

m : Bytes in flight

0

13

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

50000K

45000K

40000K

35000K

30000K

Data (bytes)

25000K

20000K

15000K

10000K|

5000K

Measurements

: Data sent (includes retransmits)
: Data acknowledged

: Data lost

: Connection flow control limit

: Sum of stream flow control limits

11000K

@,

10000K

2000

byte:

5000

n inf

70006

gesti

50006
o

5000k
4000k

3000K

m : Congestion window

m : Bytes in flight

1.000 2000 3,000

4000

Time (ms)

Data (bytes)

50000K.

45000K.

40000K.

35000K.

30000K.

25000K

20000K.

15000K.

10000K.

500K

: Data sent (Includes retransmits)
: Data acknowledged

: Data lost

: Connection flow control limit

: Sum of stream flow control limits

5000 6.000 7,000

500K

5000K

fobytesh

ion inf

3500

3000

Congesti

2500€

2000k

1500K

m : Congestion window

- : Bytes in flight

5000

1,000 2,000 3,000 4,000

Time (ms)

6,000

7.000

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

Data (bytes)

©

5000K

4500K

4000K

3500K

3000K

2500K

2000K

1500K

1000K

500K

Measurements

Recovery in action (zoomed in)

: Data sent (includes retransmits)
: Data acknowledged

: Data lost

: Connection flow control limit

: Sum of stream flow control limits

200

300

350

Time (ms)

400

5500K

5000K

500

550

650

4500‘&

‘
=

Congestion in

30001

2500K

2000K

1500K

m : Congestion window

m : Bytes in flight

15

Firefox QUIC Congestion Control — Spurious Congestion Event Recovery

C

Measurements

e \We see strong anecdotal evidence and signal from
micro-benchmarks

e But what about real world data?

e High level metrics very noisy due to heterogeneous
environments

e So especially changes like this one that only apply to

some subset of users are hard to see in metrics

16

Alternative Backoff
with ECN

Firefox QUIC Congestion Control — Alternative Backoff with ECN

What is ECN?

e Explicit Congestion Notification (REC 3168)

e Adjust rate without relying on packet loss as a signal

e Middlebox notifies sender if queue buildup starts by
setting IP header value

e BUT path has to be capable of marking and passing
along ECN signal

C

18

https://www.rfc-editor.org/rfc/rfc3168

Firefox QUIC Congestion Control — Alternative Backoff with ECN

State of ECN

137 138 139 140 141 142 143 144 145 146 147
NN///~\\“’/\’—\”'—\“f“”’\——_.Hov.

60.000%
L J
AN v~///vL”’ REF.

/ N _—
50.000%

’\/\—\/\/\/\
40.000% f»\\\\ﬁj\\\\$¢\\\\ .,

HOV. REF.

—— 4 60.000%

50.000%

e 40.000%

,\//\/\/\'—ﬁ“\f_'—f
30.000% 30.000%
20.000% 20.000%
10.000% 10.000%
d\ T\ e *
0.000% ® o 0.000%
April July October 2026

CAT.
@ capable

]
bleaching

® black-
hole

=}
received-
unsent-
ect-1

2C%22b|each|ng%22%20%22black—hole%22%2C%22recelved unsent-ect-1%22%5D&app_id= beta&tlmeHorlzon ALL

$

19

https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_ecn_path_capability/explore?activeBuckets=%5B%22capable%22%2C%22bleaching%22%2C%22black-hole%22%2C%22received-unsent-ect-1%22%5D&app_id=beta&timeHorizon=ALL
https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_ecn_path_capability/explore?activeBuckets=%5B%22capable%22%2C%22bleaching%22%2C%22black-hole%22%2C%22received-unsent-ect-1%22%5D&app_id=beta&timeHorizon=ALL

Firefox QUIC Congestion Control — Alternative Backoff with ECN

C

Alternative Backoff with ECN

e Usually ECN triggers the same window reduction as
loss

e RFC 8511 suggests using a smaller decrease

because ECN is an earlier signal than loss
e This would lead to higher overall utilization
e Looked good in simulations and merged in #3233

e But again, how does it behave in reality?

20

https://www.rfc-editor.org/rfc/rfc8511.html
https://github.com/mozilla/neqo/pull/3233

Firefox QUIC Congestion Control — Alternative Backoff with ECN

Analysis

e As usual, higher level metrics are too noisy
e Lower level metrics could have been influenced by
other things bundled into the Neqo release

e Makes it hard to isolate feature impact

C

21

Firefox QUIC Congestion Control — Alternative Backoff with ECN

State of ECN

2026-01-06 10: 00: 00

147 HOV. REF. CAT.
100.000% A 100.000%
"HOV.—\/\NWNW\[\/\ .\—k
REF. ® loss
80.000% 80.000% ® ecn-
ce
60.000% 60.000%
40.000% 40.000%
20.000% 20.000%
o~ —— Vv /“\/—/\/x—‘w—’\r\/;—’“\/\ \N 0——#“"—‘_*

0.000% 0.000%

Jan 04 Jan 1 Jan 18 Jan 25

%2C%22ecn ce%22%5D

C

22

https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_congestion_event_reason/explore?activeBuckets=%5B%22loss%22%2C%22ecn-ce%22%5D
https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_congestion_event_reason/explore?activeBuckets=%5B%22loss%22%2C%22ecn-ce%22%5D

How to fix the data
problem?

Firefox QUIC Congestion Control — How to fix the data problem?

Specialized metrics

e High level metrics with a built-in filter
e E.g.throughput for connections that see at least one

spurious congestion event

- “see a% throughput increase for connections that see

spurious loss, which is b% of connections”

C

24

Firefox QUIC Congestion Control — How to fix the data problem?

Run A/B experiments

e |solate features
e Needs code instrumentation and takes time to set up
and evaluate

e But gives most accurate signal

C

25

What’s Next: Slow
Start Exit

Firefox QUIC Congestion Control — Slow Start Exit

The problem

TUVUWIN

30000K
20000K

10000K

20000K

15000K

10000K

5000K

0 1,000 2,000 3,000

©

Firefox QUIC Congestion Control — Slow Start Exit

Worth optimizing?

2026-01-26 09: 00: 00

147 HOV. REF. CAT.
o, : —@ .—* o,
80.000% i 80.000%

REF. .o

not_exited

60.000% 60.000% ® exited
40.000% 40.000%
20.000% —— el & 20.000%
0.000% - | —————— 0.000%

Tue 13 Thu 15 Sat 17 Mon 19 Wed 21 Fri 23 Jan 25

=%5B%22not_exited%22%

20%22eX|ted%22%5D&app id=beta&timeHorizon=ALL

¢

https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_slow_start_exited/explore?activeBuckets=%5B%22not_exited%22%2C%22exited%22%5D&app_id=beta&timeHorizon=ALL
https://glam.telemetry.mozilla.org/fog/probe/networking_http_3_slow_start_exited/explore?activeBuckets=%5B%22not_exited%22%2C%22exited%22%5D&app_id=beta&timeHorizon=ALL

Firefox QUIC Congestion Control — Slow Start Exit

What's next

e Working on a research project to compare slow start

heuristics (HyStart++, SEARCH, maybe more) that
aim to exit without packet loss

e Taking learnings, designing specialized metrics and
scheduling time for experimentation

e Hopefully publish results in a paper to help advance
emerging standards like the SEARCH project with

real world data

C

29

https://datatracker.ietf.org/doc/html/rfc9406
https://search-ss.wpi.edu/

Thank you!

Firefox QUIC Congestion Control

Questions?

e FOSDEM hallway

e Mail: omansfeld@mozilla.com

e Matrix: @omansfeld:mozilla.org

e Check out our data!

https://dlam.telemetry.mozilla.orq/

e Check out qvis! https://qvis.quictools.info/

C

31

mailto:omansfeld@mozilla.com
http://mozilla.org
https://glam.telemetry.mozilla.org/
https://qvis.quictools.info/

