Delegating SQL Parsing to
PostgreSQL

Greg Potter
FOSDEM 2026

How do you build a tool that
understands a Postgres schema®

Option A: Write a SQL parser 9

Option B: Ask Postgres &

CREATE FUNCTION calculate_weighted_average (
measurements jsonb,
weights numeric[] DEFAULT ARRAY[1.0],
ignore_nulls boolean DEFAULT true
) RETURNS TABLE (
category text,
weighted_avg numeric(10,4),
sample_count bigint,
quality text
) LANGUAGE sql STABLE PARALLEL SAFE
BEGIN ATOMIC
SELECT
m->>'category',
sum((m->>"'value')::numeric * w) / nullif(sum(w), 0),
count(*),
CASE

WHEN count(*) >= 100 THEN 'high’
WHEN count(*) >= 10 THEN 'medium’
ELSE 'low'

END

FROM jsonb_array_elements(measurements) WITH ORDINALITY AS t(m, i)
LEFT JOIN unnest(weights) WITH ORDINALITY AS w(w, wi) ON t.i = w.wi
WHERE NOT ignore_nulls OR m->>'value' IS NOT NULL
GROUP BY m->>'category';

END;

What Postgres Knows Now

postgres=# SELECT proname, proargtypes, proallargtypes, proargnames, prorettype, provolatile,
proparallel, prosqlbody FROM pg_proc WHERE proname ='calculate_weighted_average';

—[1 FEEOED 1] oo i oo oo et o i D A D P I A T
proname | calculate_weighted_average
proargtypes | 3802 1231 16 -- jsonb, numeric[], boolean
proallargtypes | {3862,1231,16,25,1700,20,25} -- jsonb, numeric[], boolean, text, numeric,
proargnames | {measurements,weights, ignore_nulls,category,weighted_avg, sample_count,quality}
prorettype | 2249
provolatile | s -- STABLE
proparallel | s -- PARALLEL SAFE

I

prosqlbody (parsed query tree)

Shadow Database

Your schema files Temporary

(-sql)

System catalogs
(queryable!)

Postgres
(empty, local)

System Catalogs

pg_class

tables, views, indexes, sequences, materialized views

pg_attribute

columns

pg_proc

functions, procedures, aggregates

pg_type

types (built-in, composite, enum, domain, range)

pg_constraint

primary keys, foreign keys, check, unique, exclusion

pg_index

index details (columns, expressions, predicates)

Querying the catalogs

SELECT attname,
format_type(atttypid, atttypmod) as type,
NOT attnotnull as nullable,
pg_get_expr(d.adbin, d.adrelid) as default
FROM pg_attribute a
LEFT JOIN pg_attrdef d ON a.attrelid = d.adrelid AND a.attnum = d.adnum
WHERE a.attrelid = 'orders'::regclass
AND a.attnum > 0;

attname | type | nullable | default
—————————— T e i
id | integer | f |

status | order_status | f | 'pending’'::order_status
customer | text | f |

Order Matters

postgres=# DROP TABLE orders; pending_order_count (view)
ERROR: cannot drop table orders because other objects depend on it | uses
DETAIL: function pending_orders() depends on table orders pending_orders() (function)
view pending_order_count depends on function pending_orders() | queries
HINT: Use DROP ... CASCADE to drop the dependent objects too. orders (table)

| uses

order_status (type)
postgres=# DROP TYPE order_status;

ERROR: cannot drop type order_status because other objects depend on it
DETAIL: column status of table orders depends on type order_status
function pending_orders() depends on type order_status

view pending_order_count depends on function pending_orders()

HINT: Use DROP ... CASCADE to drop the dependent objects too.

pPg_depend stores the graph

classid | objid | refobjid | deptype
———————————— e T e it Dt
pg_rewrite | pending_order_count | pending_orders | n
pg_proc | pending_orders | orders | n
pg_class | orders | order_status | n

From graph to order

pg_depend gives you edges:
pending_order_count — pending_orders
pending_orders — orders
orders — order_status

Topological sort gives you order:

CREATE: order_status — orders — pending_orders — pending_order_count
DROP: pending _order count — pending_orders — orders — order_status

deptype

deptype = 'n' (normal)
view — function — table — type
Real dependencies. These are yours.

deptype = 'a' (automatic)
sequence — SERIAL column
index — table
Created together. Linked.

deptype ="' (internal)
TOAST table — parent
Postgres internals.

deptype = 'e' (extension)
st_distance — postgis
Belongs to an extension. Not yours.

What pg _depend can't see

-- pg_depend CAN'T see inside this (string-literal bodies)
CREATE FUNCTION pending_orders() RETURNS SETOF orders
LANGUAGE sql STABLE

AS $$
SELECT * FROM orders WHERE status = 'pending’;

SS;

pg_depend tracks:
function — return type (SETOF orders) v/

pg_depend doesn't track:
function body — orders table X
function body — status column X

BEGIN ATOMIC fixes this

-- pg_depend CAN see inside this (BEGIN ATOMIC)
CREATE FUNCTION pending_orders() RETURNS SETOF orders
LANGUAGE sql STABLE
BEGIN ATOMIC

SELECT * FROM orders WHERE status = 'pending’;
END;

pg_depend tracks:
function — return type (SETOF orders) v/
function body — orders table v
function body — status column v

Implicit objects

CREATE TABLE my_table (
id SERIAL PRIMARY KEY

objid | refobjid | deptype
__________ T T Ty
my_table | my_table_id_seq | a
my_table | my_table_pkey | a
Creates:

table: orders
sequence: orders_id_seq (deptype 'a')
index: orders_pkey (deptype 'a')

Array types

CREATE TYPE order_status AS ENUM (...);

Creates:
type: order_status
type: _order_status (array type, depends on order_status, deptype ‘i’);

CREATE TABLE array_table (statuses order_status[]);
refobjid | deptype

array_table | _order_status | n
_order_status | order_status | i

Trade Offs

You need a running Postgres
Shadow database = real database

You have to build support explicitly
There are a lot of catalog tables

Postgres versions matter
Catalogs evolve
prosqlbody requires Postgres 14+

Review your output
Only as complete as your queries

The toolkit

Shadow database
— Postgres parses, you query

System catalogs
— Structure, types, columns

pg_depend
— Dependency graph
— Filter by deptype
— Know the blind spots
— Watch for implicit objects

Topological sort
— Edges — correct order

pgmt

| built pgmt using all of this.

Schema-as-code for Postgres.
Edit .sql files, pgmt generates migrations.

pgmt.dev
github.com/gdpotter/pgmt

Not just for migrations

Drift detection
Compare expected catalogs to live state

Schema linters
Query catalogs for problems
(unused indexes, missing FKs, naming violations)

Cl validation
Apply to shadow database
If it succeeds, the schema parses

Visualization
pg_depend is the dependency graph
Draw it

Postgres already knows your schema.

Just ask.

