
Delegating SQL Parsing to
PostgreSQL

Greg Potter
FOSDEM 2026

How do you build a tool that
 understands a Postgres schema?

Option A: Write a SQL parser 😰

Option B: Ask Postgres 🤔

CREATE FUNCTION calculate_weighted_average(
 measurements jsonb,
 weights numeric[] DEFAULT ARRAY[1.0],
 ignore_nulls boolean DEFAULT true
) RETURNS TABLE (
 category text,
 weighted_avg numeric(10,4),
 sample_count bigint,
 quality text
) LANGUAGE sql STABLE PARALLEL SAFE
BEGIN ATOMIC
 SELECT
 m->>'category',
 sum((m->>'value')::numeric * w) / nullif(sum(w), 0),
 count(*),
 CASE
 WHEN count(*) >= 100 THEN 'high'
 WHEN count(*) >= 10 THEN 'medium'
 ELSE 'low'
 END
 FROM jsonb_array_elements(measurements) WITH ORDINALITY AS t(m, i)
 LEFT JOIN unnest(weights) WITH ORDINALITY AS w(w, wi) ON t.i = w.wi
 WHERE NOT ignore_nulls OR m->>'value' IS NOT NULL
 GROUP BY m->>'category';
END;

What Postgres Knows Now

postgres=# SELECT proname, proargtypes, proallargtypes, proargnames, prorettype, provolatile,
proparallel, prosqlbody FROM pg_proc WHERE proname ='calculate_weighted_average';

-[RECORD 1]--+---
proname | calculate_weighted_average
proargtypes | 3802 1231 16 -- jsonb, numeric[], boolean
proallargtypes | {3802,1231,16,25,1700,20,25} -- jsonb, numeric[], boolean, text, numeric, ...
proargnames | {measurements,weights,ignore_nulls,category,weighted_avg, sample_count,quality}
prorettype | 2249
provolatile | s -- STABLE
proparallel | s -- PARALLEL SAFE
prosqlbody | (parsed query tree)

Your schema files
(.sql)

Temporary
Postgres

(empty, local)

System catalogs
(queryable!)

Shadow Database

System Catalogs

pg_class tables, views, indexes, sequences, materialized views

pg_attribute columns

pg_proc functions, procedures, aggregates

pg_type types (built-in, composite, enum, domain, range)

pg_constraint primary keys, foreign keys, check, unique, exclusion

pg_index index details (columns, expressions, predicates)

Querying the catalogs

SELECT attname,
 format_type(atttypid, atttypmod) as type,
 NOT attnotnull as nullable,
 pg_get_expr(d.adbin, d.adrelid) as default
FROM pg_attribute a
LEFT JOIN pg_attrdef d ON a.attrelid = d.adrelid AND a.attnum = d.adnum
WHERE a.attrelid = 'orders'::regclass
 AND a.attnum > 0;

 attname | type | nullable | default
----------+--------------+----------+-------------------------
 id | integer | f |
 status | order_status | f | 'pending'::order_status
 customer | text | f |

Order Matters

postgres=# DROP TABLE orders;
ERROR: cannot drop table orders because other objects depend on it
DETAIL: function pending_orders() depends on table orders
view pending_order_count depends on function pending_orders()
HINT: Use DROP ... CASCADE to drop the dependent objects too.

postgres=# DROP TYPE order_status;
ERROR: cannot drop type order_status because other objects depend on it
DETAIL: column status of table orders depends on type order_status
function pending_orders() depends on type order_status
view pending_order_count depends on function pending_orders()
HINT: Use DROP ... CASCADE to drop the dependent objects too.

pending_order_count (view)
 ↓ uses
pending_orders() (function)
 ↓ queries
orders (table)
 ↓ uses
order_status (type)

pg_depend stores the graph

 classid | objid | refobjid | deptype
------------+---------------------+----------------+---------
 pg_rewrite | pending_order_count | pending_orders | n
 pg_proc | pending_orders | orders | n
 pg_class | orders | order_status | n

From graph to order

pg_depend gives you edges:

 pending_order_count → pending_orders
 pending_orders → orders
 orders → order_status

Topological sort gives you order:

 CREATE: order_status → orders → pending_orders → pending_order_count
 DROP: pending_order_count → pending_orders → orders → order_status

deptype

deptype = 'n' (normal)
 view → function → table → type
 Real dependencies. These are yours.

deptype = 'a' (automatic)
 sequence → SERIAL column
 index → table
 Created together. Linked.

deptype = 'i' (internal)
 TOAST table → parent
 Postgres internals.

deptype = 'e' (extension)
 st_distance → postgis
 Belongs to an extension. Not yours.

What pg_depend can't see

-- pg_depend CAN'T see inside this (string-literal bodies)
CREATE FUNCTION pending_orders() RETURNS SETOF orders
LANGUAGE sql STABLE
AS $$
 SELECT * FROM orders WHERE status = 'pending';
$$;

pg_depend tracks:
 function → return type (SETOF orders) ✓

pg_depend doesn't track:
 function body → orders table ✗
 function body → status column ✗

BEGIN ATOMIC fixes this

-- pg_depend CAN see inside this (BEGIN ATOMIC)
CREATE FUNCTION pending_orders() RETURNS SETOF orders
LANGUAGE sql STABLE
BEGIN ATOMIC
 SELECT * FROM orders WHERE status = 'pending';
END;

pg_depend tracks:
 function → return type (SETOF orders) ✓
 function body → orders table ✓
 function body → status column ✓

CREATE TABLE my_table (
 id SERIAL PRIMARY KEY
);
 objid | refobjid | deptype
----------+-----------------+---------
 my_table | my_table_id_seq | a
 my_table | my_table_pkey | a

Creates:
 table: orders
 sequence: orders_id_seq (deptype 'a')
 index: orders_pkey (deptype 'a')

Implicit objects

CREATE TYPE order_status AS ENUM (...);
Creates:
 type: order_status
 type: _order_status (array type, depends on order_status, deptype ‘i’);

CREATE TABLE array_table (statuses order_status[]);

 objid | refobjid | deptype
---------------+---------------+---------
 array_table | _order_status | n
 _order_status | order_status | i

Array types

Trade Offs

You need a running Postgres
 Shadow database = real database

You have to build support explicitly
 There are a lot of catalog tables

Postgres versions matter
 Catalogs evolve
 prosqlbody requires Postgres 14+

Review your output
 Only as complete as your queries

The toolkit

Shadow database
 → Postgres parses, you query

System catalogs
 → Structure, types, columns

pg_depend
 → Dependency graph
 → Filter by deptype
 → Know the blind spots
 → Watch for implicit objects

Topological sort
 → Edges → correct order

pgmt

I built pgmt using all of this.

Schema-as-code for Postgres.
Edit .sql files, pgmt generates migrations.

pgmt.dev

github.com/gdpotter/pgmt

Not just for migrations

Drift detection
 Compare expected catalogs to live state

Schema linters
 Query catalogs for problems
 (unused indexes, missing FKs, naming violations)

CI validation
 Apply to shadow database
 If it succeeds, the schema parses

Visualization
 pg_depend is the dependency graph
 Draw it

Postgres already knows your schema.

Just ask.

