
OOMProf
by Tommy Reilly

OOMProf

OOMProf is a set of eBPF programs that copy the Go runtime’s built in
memory profiling buffers into eBPF maps when OOMs occur so the
current memory usage can be analyzed after the program is killed.

Motivation

Polar Signals provides a continuous production-ready profiling solution
that covers CPU, memory, off-CPU (aka scheduling) and GPU profiling.

There’s no more important time to know what the memory profile of
your program looks like as when the kernel decides your program is the
“problem” and nukes it out of orbit

OOMProf has enabled our customers (and ourselves) to understand
exactly why OOMs occur and fix them quickly

In practice scraping a memory profile every couple minutes can miss the
root cause of an OOM, things can go off the rails quickly! Sometimes in
one allocation!

The Real Motivation

Go Memory Profiler

One of Go’s nicer features is a built in statistical memory profiler that
samples memory allocation stacks.

Its turned on automatically if your program references the
runtime.MemProfile function, typically done via the net/http/pprof
package

By default it takes a sample every 512kb of allocations, which means it
walks the stack a sticks a record into a giant hash table

When a profiled allocation is freed the record for that stack its recorded
to enable “in_use” profiling

But Go is GC’d? How do you not count garbage?

Good question! Go stores alloc/free stats in cycle buckets and when
alloc/frees happen they are accounted into a “future” bucket, after a GC
sweep the future buckets are merged to an “active” bucket so the active
reported memory is what the memory looked like at the end of the last
sweep, as if there was never any garbage.

This is important because for oomprof we want to report the future
buckets, even though some allocations may no longer be reachable they
are taking up real memory until a sweep happens

Process Registration

The first step in oomprof’ing is registering PIDs that you care about in an
eBPF map, this stores the PID and looks up the "runtime.mbuckets"
address where the profiling data lives.

OOMProf can be used as a library where you self register or if you use the
Polar Signals profiling agent and enable oomprof we’ll automatically
watch all Go processes.

The library use case is complicated because you need a separate process
to be the “watcher” for your process so we’ll just talk about the Polar
Signals agent.

Hooking into the kernel

To know if your program is getting oom killed you can just hook into the
“oom/mark_victim” tracepoint, this is called when your program has
been picked for OOM killing. When this occurs we look up the pid to see
if its a “known” Go process and if it is we make a note that that pid is
about to be killed

Running eBPF in the right context

The mark_victim tracepoint can get fired when a different process requests memory, ie the
process asking for memory isn’t necessarily the one that gets killed. That means we can’t just
start reading the profilers buckets, we may be in a different process!

Luckily the process that’s getting killed gets sent a signal so we can attach another eBPF
program to “signal/signal_deliver” tracepoint and do eBPF map lookups to see if the signal
target pid is the victim pid.

Yes this does mean that signal delivery will get marginally slower but the overhead of a
uprobe and a couple eBPF map lookups is small and signals aren’t typically firing at a high
rate or on the critical path for real work.

Putting it all together

parca-agent installs eBPF programs to kernel tracepoints and creates maps to
hold the the go_procs and profile records

parca-agent scans for Go processes and registers them w/ bucket address

OOM happens triggering mark_victim and signal delivery tracepoints

Signal delivery program copies mbuckets into bpf map and notifies
parca-agent via bpf_perf_event_output

parca-agent is waiting on read for these events and read the bucket map and
turns it into a pprof profile

Profile is uploaded to Polar Signals cloud for safe keeping

Does it work? Sometimes!

The profiler hash table has 179,999 buckets and they are collision
chained, so in theory you could have an infinite number of records to
record

eBPF only allows 1M instructions and our current implementation can do
3362 buckets per program

But we can use tail calls to get to 33*3362 = 110946 buckets. But to
record that many buckets would require an eBPF map of ~80MB so we
limit it by default to 60k buckets which takes ~40MB.

So in theory if you hit the 60k limit there’s 50k headroom.

What if you have more?

If you have more bucket than we can handle we’ll stop when we get to
the limit and we’ll include a “complete” status with the profile so you
know its truncated

An incomplete profile may or may not be useful, if you know you’re
program and the memory allocations that caused the oom show up in
the profile then it could be priceless but you have no idea what was in
the missed buckets so its a bit of a crap shoot

Why Limits?

The eBPF program is a loop over the buckets that does 3 bpf_read
operations per bucket

Because its a linked list of individually allocated records there is no other
way, we have to read a bucket to know where the next one is

There’s 3 reads because the stack size is dynamic so we have to read its
length first and the record payload is after the stack (so
header->stack->record)

Go by default has 1024 max stack, oomprof only reads the top 64 frames
to limit memory usage

What could go wrong?

Bpf reads sometimes fail, c’est la vie! If this happens we mark that there
was a read error and mark the profile “incomplete”

Sometimes the oom killer gets impatient and starts killing other
processes while we’re profiling, including parca-agent!

And probably 17 other things…

Future directions

Jemalloc/tcmalloc/mimalloc support

Stripped binary support, can we find “runtime.mbuckets” list by
disassembling a function we know that references it (by consulting
gopclntab)

Push profiling, usually memory profiling is done adhoc by scraping the
pprof endpoint but we could have the program intelligently decide
when to send profiles (ie when a heap expansion occurs or some
interesting memory intensive thing happens like building an index)

Try it out!

The library:

http://github.com/parca-dev/oomprof

Complete working implementation:

http://github.com/parca-dev/parca-agent

Just add –enable-oomprof to the parca-agent flags

https://www.google.com/url?q=http://github.com/parca-dev/oomprof&sa=D&source=editors&ust=1769784896019183&usg=AOvVaw23InnxUlSofmb2mD57nyDE
https://www.google.com/url?q=http://github.com/parca-dev/parca-agent&sa=D&source=editors&ust=1769784896019516&usg=AOvVaw0PYV3sQAP--pRYPvk7AdRl

Thank you for listening!

Tommy Reilly

tr@polarsignals.com

Any questions?

