Code, Compliance, and Confusion:
Open Source in Safety-Critical Products
FOSDEM, Brussels, 31-Jan-2026

Philipp Ahmann, Sr. OSS Community Manager, ETAS GmbH

whoami - Philipp Ahmann

eTAS

ELISA

Enabling in
Applications

THE

L LINUX

FOUNDATION

v

. Eclipse Software Defined Vehicle

Europe

5

Sr. OSS Community Manager
Automotive OSS Process Lead

Chair of the Technical Steering Committee
Lead of the Systems Working Group

Member of the Advisory Board

Eclipse Safe Open Vehicle Core Committer

OSS enthusiast and promoter

What Is functional safety?
And what is the difference to cyber security?

What is functional safety? ELISA

Enabling in
: : Applications
What is functional safety? PP

— Definition of Safety

— The freedom from unacceptable risk of physical injury or of damage to the health of people,
either directly, or indirectly because of damage to property or the environment.

— Definition of Functional Safety

— The part of safety that depends on a system or equipment operating correctly
in response to its inputs.

— Detecting potentially dangerous conditions,

resulting either in the activation of a protective or corrective device or mechanism
to prevent hazardous events or in providing mitigation measures
to reduce the consequences of the hazardous event.

CC-BY-4.0

What is functional safety? E!al.nsg A n

' Applicati
In Functional Safety you expect that: pplications

Software:
— does behave as specified,
— does not interfere or impair other system components,

— and all possible erroneous events are addressed somehow or somewhere.

And you have sufficient evidence to prove this.

CC-BY-4.0 5

What is functional safety? EIE.I% n

i Safety Applications
In some languages safety & security are the same word! Jo

Safe, but not seéure! Secured, but not safe!

Photo by Annie Spratt on Unsplash Photo by Jason An on Unsplash

CC-BY-4.0 6

https://unsplash.com/de/@anniespratt?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/gebaude-aus-grauem-beton-yG5EuA5dwhE?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/@jasonan?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/eine-tur-mit-graffiti-pI2XXVi9Mt0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

What is functional safety?

Samples of safety (integrity) standards

ELISA

Enabling Linux in
Safety Applications

IEC 61508 IEC 62304

Generic Standard Medical Devices

ISO 26262 [EC61511

Industrial Process

Automotive

EN 50126/8/9

IEC 62061 / 1SO 13849

IEC 61513
Nuclear Industry

1SO25119

Agriculture/Forestry

CC-BY-4.0

DO178B/C ECSS Space

Aeronautics (ESA)

« Standards represent industry best practice
and recommend to use these practices

« Share similar demands...
requirements, documentation, testing

* Rigor on measures/demands may differ

* All system parts need to be known, tested
and managed

Setting the scene
Code, Compliance & Confusion

Where do we come from? EIE.I%

Credits to Codethink, where | took the slide from! Safety Applications

Safety by the Book for Operating Systems

Wind River GHS
VxWorks Integrity

Broadly... software with “traditional” processes and long production history

CC-BY-4.0 9

Where are we going to... - The Linux world E!EEA n

. Applications
Safe <x>, Safety <x>, <x> for safety, SIL qualified... Pppieatol

:ﬂ mob'lleye About Sohflons Technology CEOC reer

Embracing Linux for Safety-
Related Applications

— Open source software superlative.
— Largest community, largest source base.

— Made for flexibility and wide use cases.

ADVANCING LINUXIN
— Spread over whole world and in space. SAFETY-CRITICAL SYSTEMS
— Several attempts with certification path.
— Gains again momentum for high Functional safety in automotive: WP Coe R P e
contributing to 150 26262 and SO W ="
performance prOdUCtS (e.g. SDV*) 2W434 Staﬂdafds F;(:;L“WNB emlix Linux Engineering ~ Prozesse &

. Sa feﬁ embedded linux systems

— Prominent open space examples: SX§ tem}é' S

SILZ2LinuxMP and ELISA
*SDV: Software-Defined-Vehicle

Codethink achieves ISO 26262 ASIL D Tool. (2
Certification

By Yasmin Ferrera: el

© sofery 150 26262 ecetson

CC-BY-4.0 1 O

Example of the safety open source landscape Elﬁf\

Safety Applications

r y y
; OpenFast |
:
Sphinx-Needs L4Re Zephyr Safety
- B)

CC-BY-4.0 11

It is not all about Linux ... spot check

y y
ryx2 ThreadX |
Autoware (Eclipse)

Eclipse Safe Halo OS CentOS BASIL
C)penC Xr:hlcle (Li Auto) Aut%TGotwe (ELISA)

Towards safety certification
Compliance

12

Route to safety certification Elﬁf\

. - Safety Applicati
The most common/typical approaches for pre-existing OSS software?! alety Appiications
—|IEC 61508 Route 3S for pre-existing software

—1S0 26262-8 clause 12 for (less complex)
automotive applications

—1SO PAS 8926 as a bridge for complex software
(on its way towards ISO 26262 3rd edition)

— SE00C: ISO 26262-10 clause 9 + ISO 26262-6
for standalone software components

— (+ some more,... better not to be listed,... maybe
Al will read this...)

Photo by Caleb Jones on Unsplash

CC-BY-4.0 1 3

https://unsplash.com/de/@gcalebjones?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/mann-mit-grauem-t-shirt-der-auf-wald-steht-J3JMyXWQHXU?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Route to safety certification EIE|I§A n

Okay, and some more options to get OSS into safety critical systems (handle with care) ppiications

— Decomposition -> OSS becomes QM

— Mixed-criticality (not always allowed) -> OSS for
QM parts in SIL system

— Tool qualification
(questionable)

—1S0 26262-8 clause 14 aka Proven in use
(very questionable)

Photo by Nathan Dumlao on Unsplash

CC-BY-4.0 14

https://unsplash.com/de/@nate_dumlao?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/eine-brieftasche-die-auf-einer-holzbank-sitzt-iOnOR4KMttc?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Proven in use (PIU) on the example of Linux EIE|I§A n

. . Applications
One version of X used in same way taken over to same/comparable use case o

— Linux is PIU in many industries and use cases?
> True, but ISO 26262 PIU is not about popularity |
or maturity - it's about demonstrable evidence for
the same item in a comparable safety context.

— Linux can be found in ADAS L2+ systems today?
- True, but even if Linux is used in ADAS L2+
systems, those implementations are highly
customized and not representative of your specific
system.

— Linux distributions vary widely (kernel versions,
patches, configurations, drivers, HW platforms).
- Use this as an argument for diversity.

Photo by Nathan Jennings on Unsplash

CC-BY-4.0 1 5

https://unsplash.com/de/@nathjennings_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/ein-leuchtturm-unter-einem-nachthimmel-voller-sterne-VsPsf4F5Pi0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Tool qualification on the example of Qt Safe Renderer ELISA

Enabling in
. . Applicati
Confidence in the use of software tools PPIESTIONS
— Carefully read the certificate as first indication. “The Qt Safe Renderer provides a Ul rendering
— Try to get the full assessment report component that can be used to render safety-
(e.g. mentioned, but not listed at QT website) critical items, such as warning indicators, in

functional safety systems.”
—1S0 26262 has part 6 mentioned up to ASIL-D

— The other standards refer to tool qualification https://doc.gt.io/QtSafeRenderer/
https://doc.gt.io/QtSafeRenderer/qtsr-delivery.html

— Question:

Qt Safe Renderer

meets the requirements listed in the below mentioned standards

Is the certification really relevant for me?

e |EC 61508:2010; Part 3; Section 7.4.4; Qualified up to SIL 3

e 150 26262:2018; Part 8; Section 11; Part 6; Qualified up to ASIL D
« EN 50128:2011; 6.7.4; Qualified up to SIL 4
e 1S5S0 25119-3 AMD 1:2020 Qualified up to AgPL e

Certification program Leittechnik (SEB-ZE-SEECERT-VA-320-20, Rev. 5.1/04.19)

CC-BY-4.0

16

https://doc.qt.io/QtSafeRenderer/
https://doc.qt.io/QtSafeRenderer/qtsr-delivery.html

Towards safety certification
Compliance & Concepts

17

Mixed Criticality & Decomposition on the example of E!EEP

| . Safety Applications
typical Linux concepts & approaches ty Applcatio

Choose your battle wisely

Safety Monitoring via RTOS Monitoring via Hypervisor

(RT)oS Linux
Linux RTOS RTOS or WDT

[]
Y

J

Safety allocated to Linux

WDT

uP

pC/WDT

Watchdog is an essential element in various concepts

A watchdog for all... ELISA

Enabling Linux in
.) Safety Applications
Check how this is achieved! Yy App

— The challenge-response watchdog serves as
the “safety net” for the safety-critical workload

Intended Safety
Functionality e T
—The concept is widely used in Automotive (Workload)
and other industrial applications

External
Watchdog

Kernel

— It can be used as an iterative approach to assign
more safety-critical functionality to Linux

With a proper system design the watchdog
will never need to trigger the “safe state”.

Photo by Marii Siia on Unsplash
CC-BY-4.0

19

https://unsplash.com/@mariisiia?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/hB2Tw57NngE?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Whom would you trust? EIEF%

. L - Safety Applicati
It is not only safety: A safety net does not release you from qualification and training AIEL AppIcations

Photo by Alan Carrillo on Unsplash Photo by Jesse Bowser on Unsplash

CC-BY-4.0 20

https://unsplash.com/de/@acarrillo46?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/person-auf-balancieren-auf-seilbinder-auf-baum-7FULj2OLGTE?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/@jessebowser?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/mann-der-an-einer-schnur-geht-die-an-felsbergen-hangt-0ulvCH8PI1E?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Whom would you trust? EIE.I%

. L - Safety Applicati
It is not only safety: A safety net does not release you from qualification and training AIEL AppIcations

Photo by Alan Carrillo on Unsplash Photo by Jesse Bowser on Unsplash Photo by Olya Mn on Unsplash

CC-BY-4.0 2 1

https://unsplash.com/de/@acarrillo46?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/person-auf-balancieren-auf-seilbinder-auf-baum-7FULj2OLGTE?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/@jessebowser?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/mann-der-an-einer-schnur-geht-die-an-felsbergen-hangt-0ulvCH8PI1E?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/@olli_mn?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/ein-vogel-der-auf-einem-draht-mit-einem-himmelshintergrund-sitzt-Utld92j9CXk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Understanding your Hardware is crucial (incl. FFI) !':I;.I%

Safety Applications

A practical example: ARM Trusted Firmware can stop CPUs for security reasons...

Photo by Annie Spratt on Unsplash Photo by Jason An on Unsplash
CC-BY-4.0

https://unsplash.com/de/@anniespratt?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/gebaude-aus-grauem-beton-yG5EuA5dwhE?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/@jasonan?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/eine-tur-mit-graffiti-pI2XXVi9Mt0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

' ' ELISA
SEooC is a SEiaC EA
You always assume a context. This is why there are assumptions of use. Check them! Applications

What is the probability
that a car will fall on your head?

23

SEooC is a SEiaC E'ﬁl\)
You always assume a context. This is why there are assumptions of use. Check them! Applications

Photo by Kato Blackmore ua on Unsplash Photo by Jimmy Nilsson Masth on Unsplash

CC-BY-4.0 24

https://unsplash.com/de/@katoblackmore?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/ein-mann-arbeitet-an-einer-maschine-in-einer-garage-KhF58h0hTbc?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/@jimmynilssonmasth?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/ein-mann-arbeitet-an-einem-auto-unter-einem-fahrzeug-FHrxSBfNzLw?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Project examples
Code

25

Project approaches

Various starting points exist...

— ,Enable Safety afterwards” - touched in previous slides

— Start from “Security footprint & Critical industries™ project

— “Certification in mind” (from beginning)

— Control the development environment & OSS project (“Single vendor OSS”)
— Certification before going open source

- Solution needs to be viable

CC-BY-4.0

26

THE

Security footprint & Critical industries L LINUX
: FOUNDATION
Example: Xen Project
Xen

— Situation: Since Xen for embedded, security WG
was started in parallel (in 2010)
— Widely adopted in critical production environment
(Data center, Desktop & Embedded)
— Community brings quality awareness

— Implemented measures:
— Rigorous Quality Process. Full commit traceability.
— Security & isolation are project’s top priority
— Commits are tested with 2 CI loops.

— Misra compliance oo | oun | coure

CC-BY-4.0 27

Certification in mind (wide use cases) L E.HIENUX

Example: Zephyr RTOS FOUNDATION

— Situation: Targeting wide use cases beyond) —=
safety & security, but consider safety certification | | S Out ot seope
from the beginning ¢ | INET——

— Resulting challenge: heterogenous community
with manifold non-safety-critical use cases

—Implemented measures:
tools and processes established early
— Traceability & Requirements - StrictDoc

- M I S RA C h e C kS https://www.zephyrproject.org/introduction-of-coding-guidelines-for-zephyr-rtos/
— Certification of code subsets.
— |EC 61508 Route 3S

CC-BY-4.0 28

https://www.zephyrproject.org/introduction-of-coding-guidelines-for-zephyr-rtos/

Single vendor open source
Example: L4Re

— Situation:
— Ownership by a single vendor enables
full control about the software

— Benefits by projects:
— Easy adoption of processes to new demands

— Resulting challenges:
— Harder to create a community
(Typically projects under foundations perform better)
— Less sharing of development cost
— Soft Lock-In

— License change to proprietary license

CC-BY-4.0

Hypervisor: L4Re by Kernkonzept L4
https://I4re.org/overview.html REe

— The L4Re Hypervisor and L4Re Micro
Hypervisor form the base for virtualization
platform for hosting workloads of general-

purpose, real-time, security and safety kinds.

— It consists of a small kernel, a microkernel,
and a user-level infrastructure that includes
basic services such as program loading and
memory management up to virtual machine
management.

29

https://l4re.org/overview.html

Doing the “hard thing” before

Example: ThreadX (former Azure RTOS)

— Situation/Benefits:
— Certified when going open source

— Risks/Challenges for the project:
— Onboarding community
— Add community contributions to the
established process
— Liability of an OSS foundation
— Certification cost covering

— Measures taken:

— Certification organization
— Commercial model

CC-BY-4.0

2

clipse Software Defined Vehicle

RTOS: ThreadX at Eclipse (Microsoft) e
https://threadx.io/ FHREAD

— This RTOS is designed for deeply
embedded applications. It provides
advanced scheduling facilities, message
passing, interrupt management, and
messaging services.

— Eclipse ThreadX RTOS has many
advanced features, including picokernel
architecture, preemption threshold, event
chaining, and a rich set of system services.

30

https://threadx.io/

Combining various approaches
Example: Eclipse Safe Open Vehicle Core (S-Core)

— Situation:
— Security footprint & Critical industries
- Automotive focus
— Certification in mind
- Develop process & SW in parallel
— Overcome single vendor OSS
—> Execute project in Eclipse Foundation
— Doing the hard thing before
—> Liability and certification cost transferred.

— Challenges:
— Clash of Automotive & OSS world
— Community focus on Automotive professionals
— “Certification ready”, but no actual certification

CC-BY-4.0

v

clipse Software Defined Vehicle

<> Eclipse S-CORE

We're a collaborative and ever-growing community of automotive experts,
technology partners, developers, and innovators united under the Eclipse
Foundation. Together, we're shaping the future of automotive software by
building open, safe, and scalable solutions.

Our Vision
“Build the best automotive runtime solution — ONLY ONCEI"

Our Mission

Unite the automotive software community around
ONE OPEN-SOURCE CORE"

Reuse “Stop reinventing the wheel”
Reduce “.._complexity, effort,..."
Evolve “Build on a future-proof foundation”

™

31

Repeating theme: Not fully open everything*

Open Core — your business case
— Source code is typically available
— Limited view on tests, requirements, traceability...

— Safety artifacts often behind a paywall
— By commercial company
— Through membership fees

— Secure business with:
— Commercial extensions and add-ons
— Alternative & compatible implementations
(safety & non-safety derivative)

Business: Liability/Certification, Add-Ons, SDK/IDE, Customer support & maintenance

CC-BY-4.0

*Ferroscene Certified Rust Compiler opens everything

32

Concluding thoughts

Confusion

33

Safe <x>, Safety <x>, <x> for safety, SIL qualified... ELISA

Enabling Linux in
: . Safety Applications
Wording does not tell you what it is! yApp

What we may have learnt:

While we are in regulated industries with lots of
definitions within safety integrity standards...

..nobody clearly defines/limits the words
being used by marketing!

Practical steps to avoid confusion:

« Understand the system & its context sufficiently. () T A\ \I C) L\E é"’

« Check where safety is actually allocated.
« Check reports & certificates carefully.
« Proof the safety net/watchdog effectiveness.

Photo by Nick Fewings on Unsplash

CC-BY-4.0

34

https://unsplash.com/de/@jannerboy62?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/schwarz-und-grau-i-love-you-print-textil-4pZu15OeTXA?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Last words or “The benefit of open” Philipp

Can there be "safety by obscurity“? My very personal opinion J

Can we put IP/patents (commercial interests) of
proprietary software over safety?

Any proprietary development would have a chance
to become “safer” by providing the source code to
the public (as e.g. expert outreach is increased).

“If you want to go fast, go alone;
if you want to go far, go together”

Photo by Kenny Eliason on Unsplash

CC-BY-4.0 3 5

https://unsplash.com/de/@heyquilia?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/grune-keramikstatue-eines-mannes-2RRq1BHPq4E?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Thank you

https://www.linkedin.com/in/philipp-ahmann/

	Slide 1: Code, Compliance, and Confusion: Open Source in Safety-Critical Products
	Slide 2
	Slide 3: What is functional safety?
	Slide 4: What is functional safety?
	Slide 5: In Functional Safety you expect that:
	Slide 6: In some languages safety & security are the same word!
	Slide 7: Samples of safety (integrity) standards
	Slide 8: Setting the scene
	Slide 9: Credits to Codethink, where I took the slide from!
	Slide 10: Safe <x>, Safety <x>, <x> for safety, SIL qualified…
	Slide 11: It is not all about Linux … spot check
	Slide 12: Towards safety certification
	Slide 13: The most common/typical approaches for pre-existing OSS software?!
	Slide 14: Okay, and some more options to get OSS into safety critical systems (handle with care)
	Slide 15: One version of X used in same way taken over to same/comparable use case
	Slide 16: Confidence in the use of software tools
	Slide 17: Towards safety certification
	Slide 18: Choose your battle wisely
	Slide 19: Check how this is achieved!
	Slide 20: It is not only safety: A safety net does not release you from qualification and training
	Slide 21: It is not only safety: A safety net does not release you from qualification and training
	Slide 22: A practical example: ARM Trusted Firmware can stop CPUs for security reasons…
	Slide 23: You always assume a context. This is why there are assumptions of use. Check them!
	Slide 24: You always assume a context. This is why there are assumptions of use. Check them!
	Slide 25: Project examples
	Slide 26: Various starting points exist…
	Slide 27: Example: Xen Project
	Slide 28: Example: Zephyr RTOS
	Slide 29: Example: L4Re
	Slide 30: Example: ThreadX (former Azure RTOS)
	Slide 31: Example: Eclipse Safe Open Vehicle Core (S-Core)
	Slide 32: Open Core – your business case
	Slide 33: Concluding thoughts
	Slide 34: Wording does not tell you what it is!
	Slide 35: Can there be ”safety by obscurity“?
	Slide 36: Thank you

