
ffex @ fosdem2026

A Rust journey into Game Boy dev

Rustboy

01. Introduction

My gameboys

My story

Me and the gameboy

My story

In the daily routine

The not-so-exciting life of a programmer

• We have a problem

• Find and replicate the problem

• Search for the problem online

• Ask AI about the problem

• Copy a solution of the problem

• Test the solution

• Is it the best solution?

• Search for the best solution online

• …….

Boom!

Fosdem 2025

02. Hardware

All the game boys

All the game boys

DMG

MGB CGB

gb

gb gbc

gba

Pandocs

This document, started in early 1995, is considered the single most
comprehensive technical reference to Game Boy available to the

public.

Link: https://gbdev.io/pandocs/

Specs

Memory Map

gb, gbc, gba

SoC

• Game Boys use only a single integrated System-on-a-Chip (SoC)

• SoC includes the processor (CPU) core, some memories, and various
peripherals

• The Game Boy SoC is sometimes called the “CPU”

More about CPU: https://gekkio.fi/files/gb-docs/gbctr.pdf
Photos: https://raphaelstaebler.medium.com/

https://gekkio.fi/files/gb-docs/gbctr.pdf

gb, gbc, gba

SoC

• Architectural differences:

• GB: the original Game Boy architecture with a Sharp SM83 CPU

• GBC: a GB architecture that adds color graphics and small improvements

• GBA: a completely different architecture based on the ARM processor
instruction set and a completely redesigned set of peripherals.

More about CPU: https://gekkio.fi/files/gb-docs/gbctr.pdf
Photos: https://raphaelstaebler.medium.com/

https://gekkio.fi/files/gb-docs/gbctr.pdf

gb, gbc

CPU

• The CPU core in the Game Boy SoC is a custom Sharp design
without a name.

More about CPU: https://gekkio.fi/files/gb-docs/gbctr.pdf
Photos: https://www.copetti.org/writings/consoles/game-boy/

• Some sources claim Game Boy
uses a “modified” Zilog Z80 or
Intel 8080.

• Using old datasheets and
databooks, the core has been
identified to be a Sharp SM83.

https://gekkio.fi/files/gb-docs/gbctr.pdf

gb, gbc

CPU

• SM83 is an 8-bit CPU core with a 16-bit address bus.

More about CPU: https://gekkio.fi/files/gb-docs/gbctr.pdf
Photos: https://www.copetti.org/writings/consoles/game-boy/

• The Instruction Set Architecture
(ISA) is based on both Z80 and
8080.

https://gekkio.fi/files/gb-docs/gbctr.pdf

03. Software

ASM

https://gbdev.io/gb-asm-tutorial/

Rednex Game Boy Development System

ASM

• Four programs to cover the whole compilation pipeline:

• Image converter / Assembler / Linker / Fixer

https://rgbds.gbdev.io/

RGBDS - Editor Online

ASM

• There is also an online editor!

https://gbdev.io/rgbds-live/

GBDK-2020 - Game Boy Development Kit

C

https://gbdk.org/

GB Studio

• It is the most advanced retro game creator. It is a complete engine
to create complete games

https://www.gbstudio.dev/

GBDK and GBVM

GB Studio

• It is based on GBDK and GBVM

• GBVM: is a VM for script-driven gb games

https://github.com/chrismaltby/gbvm

Scripting

GB Studio

GB Studio

• Also GB Studio also can be interesting for our scope!

• Also GBVM.
https://www.gbstudio.dev/

04. …and Rust?

Emulators! Emulators everywhere!

What we have

• Mooneye GB – A Game Boy research project and emulator written in Rust
• Code: https://github.com/Gekkio/mooneye-gb

• Boytacean – Full-featured Rust emulator with Web, SDL & Libretro frontends
• Code: https://github.com/joamag/boytacean

• RBoy – Gameboy Color emulator in Rust
• Code: https://github.com/mvdnes/rboy

• GB-RS – Game Boy emulator written in Rust
• Code: https://github.com/simias/gb-rs

• gameboy – Game Boy emulator written in Rust
• Code: https://github.com/raphamorim/gameboy

https://github.com/Gekkio/mooneye-gb
https://github.com/joamag/boytacean
https://github.com/mvdnes/rboy
https://github.com/simias/gb-rs?utm_source=chatgpt.com
https://github.com/raphamorim/gameboy

Emulators! Emulators everywhere!

What we have

• Retro Boy – Cycle-accurate emulator compiled to WebAssembly
• Code: https://github.com/smparsons/retroboy

• Wasm-GB – Game Boy emulator in WebAssembly + WebGL 2.0
(Rust)
• Code: https://github.com/andrewimm/wasm-gb

• gameboy – Game Boy emulator written in Rust
• Code: https://github.com/raphamorim/gameboy

https://github.com/smparsons/retroboy
https://github.com/andrewimm/wasm-gb
https://github.com/raphamorim/gameboy

Emulators! Emulators everywhere!

What we have

• There are a lot of educational projects created to learn about:

• Emulation

• Gameboy

• Rust

Crates for gba

What we have

• There are some crates to make games for gba:

• gba

• agb

• Others project educational / list of utilities

gb/gbc?

• As said, the gba has a different architecture and a different
processor. gba have an ARM CPU.

• On the board is also the SM83 to maintain compatibility

https://www.copetti.org/writings/consoles/game-boy-advance/

Platform support

Rust

• Support for different platforms (“targets”) are organized into three
tiers:

• Tier 1 -> targets can be thought of as “guaranteed to work”.

• Tier 2 -> targets can be thought of as “guaranteed to build”.

• Tier 3 -> targets are those which the Rust codebase has support
for, but which the Rust project does not build or test automatically,
so they may or may not work. Official builds are not available.
Here we have our gba CPU

Platform support

gb/gbc?

• There are not support for the SM83.

• Rust can’t be compiled

• But something exist…

By zlfn

Rust-GB

• Is a project work in progress…

• And try to obtain the build with a “workaround.”

1. The Rust compiler can generate LLVM-IR for the ATMega328

2. LLVM-IR can be converted in C with llvm-cbe

3. C compiled to Z80 assembly with sdasgb

4. Z80 Assembly can be assembled into GBZ80 with sdasgb

5. GBZ80 object code can be linked in a ROM gb with GBDK

https://github.com/zlfn/rust-gb

By zlfn

cranelift-z80

• New project by zlfn.

• Remove all the steps of rust-gb using cranelift:

• Cranelift is a compiler backend that translates a target-
independent intermediate representation into executable machine
code.

• Is in early stage

• The main idea is to compile in only two steps

https://cranelift.dev/
https://github.com/zlfn/cranelift-z80

By BonsaiDen

gbc-rs

• gbc is a Rust-based compiler for Gameboy Z80 assembly code.

• The syntax is handmade and similar to the assembly with some high
level blocks

• It is interesting and inspirating

https://gitlab.com/BonsaiDen/gbc-rs

05. Rustboy

The idea

• We have in front of us only one CPU…

• Can we do a specific Rust compiler for the SM83?

• Great idea! I always develop a compiler!

https://github.com/ffex/rust-boy

Proof of concept

PoC

RGBDS

ASM

gb_asm

gb_std

rust_boy{
{To speed up the development, I put

a solid working base.

RustBoy

Unbricked - an Arkanoid copy

How show results?

• In gbdev.io, as an example to illustrate how to create games in asm,
the initial example is a copy of the famous Arkanoid.

• This example is important to see what happens when we go up to
the high level to the code

• So let me explain some part of this game in asm

http://gbdev.io

Inits

Unbricked - originals

Variables

Unbricked - originals

Tiles and Tilemap

Unbricked - originals

Memcopy

Unbricked - originals

Functions

Unbricked - originals

Main loop - Input

Unbricked - originals

Main loop - Movement

Unbricked - originals

gb_asm

• It is the most low-level library.

• Almost one-to-one with the asm but in Rust!

• Instructions are something like: asm.ld(…), asm.cp(…), …

• Link to an article that inspire me:

https://tinycomputers.io/posts/building-z80-roms-with-rust-a-modern-approach-to-retro-computing.html

unbricked.rs

gb_asm

gb_std

• This lib is more of a high-level and implements:

• A chunk system (Main, Functions, Tiles, etc.) so you can put code
from everywhere, and at the time of the generation are put in the
right section.

• Tile and tilemap utilities

• A sprite manager
• The initial attempt at an if statement.

gb_std

Utilities

gb_std

If statement

gb_std

sprite_manager

gb_std

rust_boy

• With gb_std we understood what we can level up:

• If statements have to be simpler

• The init instructions must be written in an automatic way

• There are some functions that can be considered “BuiltIn
(UpdateKeys, WaitVBlank, Memcopy, etc.)

• Make more managers (Tiles, Inputs, etc.)

• Hide every reference to the memory address

rust_boy

unbricked.rs

rust_boy

http://unbricked.rs

unbricked.rs

rust_boy

http://unbricked.rs

unbricked.rs

rust_boy

http://unbricked.rs

unbricked.rs

rust_boy

http://unbricked.rs

The fosdem example

Try rust_boy!

rust_boy at Fosdem!

rust_boy at Fosdem!

Improvment

What’s next?

• Refactor the code.

• Try to write new examples to find new builtin functions

• Implement the sound manager.

Low-level

What’s next?

RGBDS

ASM

gb_asm

gb_std

rust_boy{
{An assembler and linker to

generate the gb ROM

RustBoy

Assembler/linker

High-level

What’s next?

RGBDS

ASM

gb_asm

gb_std

rust_boy{
{An assembler and linker to

generate the gb ROM

RustBoy

Assembler/linker

Rust parserA parser / AST / etc. for Rust

One more thing…

rust_boy

GBStudioCustom Engine

Thank you

 https://github.com/ffex

 https://www.linkedin.com/in/federico-bassini/

 https://mastodon.social/@ffex

 https://www.instagram.com/ffex_tech/
rust-boy

