Rustboy

A Rust journey into Game Boy dev

ffex @ fosdem?2026

1. IntroducTtTion

>
-
O
1
)
>
=

P
o>
O
e
O
S
T
@)
o>
=

My story

Me and the gameboy

We have a problem
Find and replicate the problem
Search for the problem online

Ask Al about the problem

Copy a solution of the problem

Test the solution

s it the best solution?

Search for the best solution online

Fosdem 2025

Boom!

D, Havrdware

All the game boys

Source: Nintendo Note: Diagrams not to scale, dates refer to European release (excluding the Game Boy, Game Boy Pocket) Press Association Graphic Curl’yS G pC World

All the game boys

Source: Nintendo Note: Diagrams not to scale, dates refer to European release (excluding the Game Boy, Game Boy Pocket) Press Association Graphic Curl’yS G pC World

This document, started in early 1995, is considered the single most
comprehensive technical reference to Game Boy available to the
oublic.

Link: https://gbdev.io/pandocs/

s Q Pan Docs

Foreword

This document, started in early 1995, is considered the single most comprehensive technical
reference to Game Boy available to the public.

You are reading a new version of it, maintained in the Markdown format and enjoying renewed
community attention, correcting and updating it with recent findings. To learn more about the legacy
and the mission of this initiative, check History.

SCOPE

The information here is targeted at homebrew development. Emulator developers may be also
interested in the Game Boy: Complete Technical Reference document.

Contributina

s 0 ¢

SECS

CPU

Master
Clock

System
Clock

Work RAM
Video RAM

Screen

Resolution

OBJ
("sprites")

Palettes

Colors

Horizontal
sync

Vertical
sync

Sound

Power

Game Boy Game Boy
(DMG) Pocket (MGB)

Super Game Game Boy Color
Boy (SGB) (CGB)

8 -bit 8080 -like Sharp CPU (speculated to be a SM83 core)

4.194304 MHz1

Depends on Up to
revision? 8.388608 MHz

1/4 the frequency of Master Clock

8 KiB

8 KiB

LCD LCD
4.7 x 4.3 cm 4.8 x 4.4 cm

160 x 144

32 KiB3
(4 + 7 x 4 KiB)

16 KiB3
(2 x 8 KiB)
CRT TV TFT 4.4 x 4 cm

160 x 144
within
256 x 224
border

160 x 144

8 x 8 or 8 x 16 ; max 40 per screen, 10 per line

BG: 1 x 4, OBJ: 2 x 3

4 shades of 4 shades of
green gray

9.198 KHz
59.73 Hz

4 channels with stereo output

DC 6V,

o DC 3V, 0.7 W

BG/OBJ:
1+4x3,
border: 4 x 15

BG: 8 x 4, OBJ:
8 x 33

32768 colors (15-bit RGB)

Complicated” 9.198 KHz

Complicated” 59.73 Hz

4 channels with
stereo output

4 GB channels +
SNES audio

Powered by

NS DC 3V, 0.6 W

Memory Map

Description
16 KiB ROM bank 00

16 KiB ROM Bank 01-NN

8 KiB Video RAM (VRAM)
8 KiB External RAM

4 KiB Work RAM (WRAM)
4 KiB Work RAM (WRAM)

Echo RAM (mirror of
C0O00-DDFF)

Object attribute memory
(OAM)

Not Usable

I/O Regqisters
High RAM (HRAM)

Interrupt Enable register
(IE)

Notes
From cartridge, usually a fixed bank

From cartridge, switchable bank via
mapper (if any)

In CGB mode, switchable bank 0/1

From cartridge, switchable bank if any

In CGB mode, switchable bank 1-7

Nintendo says use of this area is
prohibited.

Nintendo says use of this area is
prohibited.

2 =

SOC LEBWEE e cr
; 47 —! ©1989 Nintendo .

gb, gbc, gha

oeripherals

- The Game Boy SoC is sometimes called the “CPU”

More about CPU: https://gekkiofi/files/gb-docs/gbctrpd!

Photos: https://raphaelstaeblermedium.com/

- Game Boys use only a single integrated System-on-a-Chip (SoC)

- SoC includes the processor (CPU) core, some memories, and various

Al 6v06
NVav(
SRAVHS
T-NLV9ZSHT

LH5264TN-L

SHARP
~ JAPAN

9048 1Y

https://gekkio.fi/files/gb-docs/gbctr.pdf

¥ p]
< o Y A
- i & A"
[d ; | i
W2 gzl ulli |1‘ L
§ /!’_./ f | %

SOC s [— - [T
] V7 = ©1989 Ninfendo . . ey S rewrmrs

Nvave

Al 6P06
SAVHS
T-NL1¥92ZSHT

JAPAN

gb, gbc, gha

...........

LH5264TN-L
SHARP
~ JAPAN

9048 1Y

Architectural differences:
GB: the original Game Boy architecture with a Sharp SM83 CPU
GBC: a GB architecture that adds color graphics and small improvements

GBA: a completely different architecture based on the ARM processor
instruction set and a completely redesigned set of peripherals.

More about CPU: https://gekkiofi/files/gb-docs/gbctrpd!

Photos: https://raphaelstaeblermedium.com/

https://gekkio.fi/files/gb-docs/gbctr.pdf

ghb, ghbc

- The CPU core in the Game Boy SoC is a custom Sharp design
without a name.

- Some sources claim Game Boy
uses a ‘modified” Zilog Z80 or
Intel 8080.

- Using old datasheets and
databooks, the core has been
identified to be o Sharp SM83.

nmi g

‘; { Am h-l‘g‘_ao An“; il

More about CPU: https://gekkio fi/files/ab-docs/abctripdf
Photos: https://www.copetti.org/writings/consoles/game-boy/

o

https://gekkio.fi/files/gb-docs/gbctr.pdf

ghb, ghbc

« SM83 is an 8-bit CPU core with a 16-bit address bus.

- The Instruction Set Architecture

ggggi.s based on both Z80 and :;'4 - mﬁﬁu i&“‘i ! J ;.:

' pMG-CPU B
3 ©1989 Ni
| JAPAN

'titi'.tmuum

‘n ‘-‘ 9‘30‘. il h‘

More about CPU: https://aekkiofi/files/ab-docs/abctripdf

Photos: https://www.copetti.org/writings/consoles/game-boy/

https://gekkio.fi/files/gb-docs/gbctr.pdf

DA, SotTtTware

QO O® 2 fosdem:vimmain.asm

BNCLUDE "hardware.inc"
SECTION "Header", ROMO[$100]
jp EntryPoint

ds $150 - @, 0

EntryPoint:

call waitVBlank
ida, 0

1d [rLCDC], a

1d de, player_right
1d hl, $8400

1d bc, player_rightEnd - player_right
call Memcopy

1d de, player_left
1d hl, $8000

1d bc, player_leftEnd - player_left
call Memcopy

ida, 0

1d b, 160

1d hl, _OAMRAM
ClearOam:

1d [hli], a

dec b

jp nz, ClearOam

1d hl, _OAMRAM

1d a, 88

1d [hli], a

1d a, 88

1d [hli], a

ida, 0

1d [hli], a

ida, 0

1d [hli], a

https://gbdev.io/gb-asm-tutorial/

ASM

Rednex Game Boy Development System

- Four programs to cover the whole compilation pipeline:

- Image converter / Assembler / Linker / Fixer

https://rgbds.gbdev.io/

ill RGBDS Docs Resources FAQ Install otv) ¥ Q

RGBDS

A free assembler/linker package for the Game Boy and Game Boy Color

Get the most out of the Game Boy Complete toolchain Open Source

hardware RGBDS' four programs cover the whole With a long history dating back to 1997, RGBDS is

« There is also an online editor!

https://gbdev.io/rgbds-live/

= File Options About

hardware.inc 1 ; Adapted from https://gbdev.io/gb-asm-tutorial/partl/hello_world.html [Screen I VRAM] BGO I BG1] ROM [WRAM] HRAM [1/0 I Serial]
2

hardware_compat.inc 3 INCLUDE "hardware.inc"

manasm 4
5~ SECTION "Header", ROMO[$100]
6
7 jp EntryPoint
8
9 ds $150 - @, @ ; Make room for the header
10
11 ~ EntryPoint:
12 ; Shut down audio circuitry

13 xor a

14 1dh [rAUDENA], a

15

16 ; Do not turn the LCD off outside of VBlank
17 ~ .wait_vblank

18 1dh a, [rLY]

19 cp LY_VBLANK

20 jr c, .wait_vblank

22 ; Turn the LCD off
23 1d a, LCDC_OFF
24 1dh [rLCDC], a

26 ; Copy the tile data

27 1d de, Tiles

28 1d hl, STARTOF(VRAM) + $100 * TILE_SIZE
29 1d bc, Tiles.end - Tiles

30 call Copy

e o) P T I T Tl B

gbdk-2020

An updated version of GBDK, C compiler,
assembler, linker and set of libraries for
the Nintendo Gameboy, Nintendo
Entertainment System, Sega Master
System, Sega Game Gear.

View the Project on GitHub
gbdk-2020/gbdk-2020

GBDK-2020

GBDK is a cross-platform development kit for sm83, z80 and 6502 based
gaming consoles. It includes libraries, toolchain utilities and the SDCC C
compiler suite.

Supported Consoles: (see docs)

e Nintendo Game Boy / Game Boy Color
e Analogue Pocket

e Sega Master System & Game Gear

e Mega Duck / Cougar Boy

e NES

Experimental consoles (not yet fully functional)

e MSXDOS

GB Studio

. |tis the most advanced retro game creator. It is a complete engine
to create complete games

https://www.gbstudio.dev/

u GB Studio XA English v About Docs GitHub @ Download % Q -0~

A quick and easy to use drag
and drop retro game creator for
your favourite handheld video
game system.

Available on Windows, Mac and Linux.

Download on Itch.io

GB Studio

GBDK and GBVM

 |tis based on GBDK and GBVM

- GBVM: is a VM for script-driven gb games

https://github.com/chrismaltby/gbvm

Game World 9 GB Studio

GB Studio
Platform Scene oo

cmaltby

v Enable Color Mode

Starting Scene

Shooter Scene
Start Position
e X 6

[
'Ilhﬁ Eﬁiﬁhﬁﬁ: Direction

More Settings

Launch Projectile

Add Event

Dance

Search...

Sprite Sheet Animation Stat
(* cat v ’ ‘ Default
Source

(* Actor 1

Offset X Offset Y

0 0

Launch At Direction
{Fixed Direction v ’ ‘ < A

Direction Offset

0

Speed Animation Spe:
Speed 2 v ’ ‘ Speed 4

Life Time
1

Loop Animation

Fa Y | HP D o

Destroy On

S A0 WAL

FAVORITES

Change Scene

Display Dialogue

CATEGORIES

Actor

Camera

Color

Control Flow
Dialogue & Menus
Engine Fields
Input

Math

Music & Sound Effects
Save Data

Scene

Screen

Timer

Variables

Miscellaneous

vV VvV VvV VvV VvV VvV VvV V V V V V V V. YV

Description

Make an actor dance!

- Parameters

Variables: 0/10
Actors: 1/10

‘ Actor A

Script

¥ ActorA Set Direction Right

[Actor A

< [< [>

¥ Wait For 0.1 Seconds

Button

-
Attach Script To Button

| «

| A

Override default button action

‘ On Press

-

ON PRESS

If Math Expression

Seconds
|
(0.1 Expression
‘ e.g. $health >=0...
¥ ActorA Set Direction Up
(
Actor A § [
-
\
Else
» Wait For 0.1 Seconds (
i i e w (

GB Studio

. Also GB Studio also can be interesting for our scope!

- Also GBVM.
https://www.gbstudio.dev/

00 Game World 200% GB Studio

v SCENES

v caves
> Cave
> Deeper Underground . i Direction
» & Underground T : k] k TR] <
Dream . .

Sprite Sheet
path

Player's House ﬂ fage
oo Size: 16x16
town
_ Movement Speed Animation Speed
N Speed 1 Speed 4

Collision Group

None

o, .and Fus 172

What we have

Emulators! Emulators everywhere!

- Mooneye GB - A Game Boy research project and emulator written in Rust

- Code: https://github.com/Gekkio/mooneye-gb

- Boytacean - Full-featured Rust emulator with Web, SDL & Libretro frontends

- Code: https://github.com/joamag/boytacean

- RBoy - Gameboy Color emulator in Rust
- Code: https://github.com/mvdnes/rboy

- GB-RS - Game Boy emulator written in Rust

- Code: https://github.com/simias/ab-rs

- gameboy - Game Boy emulator written in Rust

- Code: https://github.com/raphamorim/gameboy

https://github.com/Gekkio/mooneye-gb
https://github.com/joamag/boytacean
https://github.com/mvdnes/rboy
https://github.com/simias/gb-rs?utm_source=chatgpt.com
https://github.com/raphamorim/gameboy

What we have

Emulators! Emulators everywhere!

- Retro Boy - Cycle-accurate emulator compiled to WebAssembly
- Code: https://github.com/smparsons/retroboy

- Wasm-GB - Game Boy emulator in WebAssembly + WebGL 2.0
(Rust)
- Code: https://github.com/andrewimm/wasm-gb

- gameboy - Game Boy emulator written in Rust
. Code: https://aithub.com/raphamorim/gameboy

https://github.com/smparsons/retroboy
https://github.com/andrewimm/wasm-gb
https://github.com/raphamorim/gameboy

- There are a lot of educational projects created to learn about:

« Emulation
e Gameboy

e Rust

- There are some crates to make games for gba:
e gba

e agb

- Others project educational / list of utilities

gb/gbc?

- As said, the gba has a different architecture and a different
orocessor. gba have an ARM CPU.

- On the board is also the SI\/I83 to maintoin compatibility

https://www.copettl.org/writings/consoles/game-boy-advance/

Rust

Platform support

- Support for different platforms (“targets”) are organized into three
tiers:

- Tier 1->targets can be thought of as “‘guaranteed to work”.

- Tier 2 -> targets can be thought of as “‘guaranteed to build”.

. Tier 3 -> targets are those which the Rust codebase has support
for, but which the Rust project does not build or test automatically,
so they may or may not work. Official builds are not available.
Here we have our gba CPU

- There are not support for the SM83.

- Rust can’t be compiled

- But something exist...

Rust-GB

By zln

. |s a project work in progress...

- And try to obtain the build with a “workaround.”

1. The Rust compiler can generate LLVM-IR for the ATMega328
2. LLVM-IR can be converted in € with [lvm-cbe

3. €compiled to Z80 assembly with sdasgb

4. Z80 Assembly can be assembled into GBZ80 with sdasgb

5. GBZ80 object code can be linked in a ROM gb with GBDK

https://github.com/zlfn/rust-gb

cranelift-z80
By zln

- New project by zlfn.

- Remove all the steps of rust-gb using cranelift:

- Craneliftis a compiler backend that translates a target-
independent intermediate representation into executable machine

code.
- |sin early stage

- The main idea is to compile in only two steps

https://github.com/zlfn/cranelift-z80
https://cranelift.dev/

JoC-TS

By BonsailDen

- gbc is a Rust-based compiler for Gameboy Z80 assembly code.

- The syntax is handmade and similar to the assembly with some high
level blocks

- |tis interesting and inspirating

https://gitlab.com/BonsaiDen/gbc-rs

Do. Hus Thoy

- We have in front of us only one CPU...
- Can we do a specific Rust compiler for the SM83"~

- Greatidea! | always develop a compiler!

https://github.com/ffex/rust-boy

RustBoy

To speed up the development, | put
a solid working base.

How show results?

Unbricked - an Arkanoid copy

. |In gbdev.io, as an example to illustrate how to create games in asm,
the initial example is a copy of the famous Arkanoid.

- This example is important to see what happens when we go up to
the high level to the code

@® Emulicious - 100% (60 fps)

- So let me explain some part of this game in asm
L 1 1 I 1

I I
I . — od
I II

http://gbdev.io

Unpricked - originals

[nits

O@®® 2 originals: vim main.asm

ENCLUDE "hardware.inc"

DEF BRICK_LEFT EQU $05
DEF BRICK_RIGHT EQU $06
DEF BLANK_TILE EQU $08
DEF DIGIT_OFFSET EQU $1A
DEF SCORE_TENS EQU $9870
DEF SCORE_ONES EQU $9871

SECTION "Header", ROMO[$100]

jp EntryPoint

ds $150 - @, @ ; room for header
EntryPoint:

WaitVBlank:
1d a, [rLY]
cp 144
jp ¢, WaitVBlank

; Turn off LCD
da, 0
1d [rLCDC], a

; Copy tiles data

1d de, Tiles

1d hl, $9000

1d bc, TileskEnd - Tiles
call Memcopy

; Copy the tilemap
"main.asm" 757L, 15183B

Unpricked - originals

Variables

O@®® <2 originals: vim main.asm

Paddle:
dw "13333331
dw 30000003
dw "13333331
dw "00000000
dw 00000000
dw "00000000
dw "00000000
dw "00000000

PaddleEnd:

Ball:
dw "00033000
dw "00322300
dw 03222230
dw 03222230
dw "00322300
dw "00033000
dw "00000000
dw 00000000

BallEnd:

SECTION "Counter", WRAMO

wFrameCounter: db

SECTION "Input Variables", WRAMO
wCurKeys: db
wNewKeys: db

SECTION "Ball Data", WRAMO
wBallMomentumX: db
wBallMomentumY: db

SECTION "Score", WRAMO
BScore: db

Unpricked - originals

Tiles and Tilemap

O@®® <2 originals: vim main.asm

dw "33300333
dw 33000333
dw 33000333
dw "33333333

dw "33333333
dw "33000033
dw 30333003
dw "33000033
dw 30333003
dw 30333003
dw "33000033
dw 33333333

dw 33333333
dw 33000033
dw 30330003
dw 30330003
dw "33000003
dw 33330003
dw 33000033
dw 33333333
TilesEnd:

Tilemap:

db $00, $01, $01, $02, $03, $03, $03, $03, $03, $03, 0,0,
0,0,0,0,0,0,0,0,0,0

db $04, $05, $06, $07, $03, $03, $03, $03, $03, $03, 0,0,
0,0,0,0,0,0,0,0,0,0

db $04, $08, $05, $07, $03, $03, $03, $03, $03, $03, 0,0,
0,0,0,0,0,0,0,0,0,0

b $04, $05, $06, $07, $03, $03, $03, $03, $03, $03, 0,0,
0,0,0,0,0,0,0,0,0,0

Unpricked - originals
Memcopy

O@®® 2 originals: vim main.asm

1da, 0
1d [rLCDC], a

; Copy tiles data

1d de, Tiles

1d hl, $9000

1d bc, TileskEnd - Tiles
call Memcopy

; Copy the tilemap

1d de, Tilemap

1d hl, $9800

1d bc, TilemapEnd - Tilemap
call Memcopy

; Copy the paddle tile

1d de, Paddle

1d hl, $8000

1d bc, PaddleEnd - Paddle
call Memcopy

; Copy the balltile
1d de, Ball

1d hl, $8010

1d bc, BallEnd - Ball
call Memcopy

; initialize OAM

1d a, 0

1d b, 160

1d hl, _OAMRAM
ClearOam:

Unpricked - originals

Functions

O@®@® 2 originals: vim main.asm

B Jp Main
; Copy bytes from one area to another
; aparam de: source
; aparam hl: destination
; aparam bc: lenght
Memcopy :
1d a, [de]
1d [hli], a
inc de
dec bc
1da, b
or a, ¢
jp nz, Memcopy
ret
UpdateKeys:
; poll hald the controller
1d a, P1F_GET_BTN
call .onenibble
1d b, a ; B7-4 = 1; B3-0 = unpressed button

; poll the other half

1d a, P1F_GET_DPAD

call .onenibble

swap a ; A7-4 upressed direction; a3-0 =1
xor a, b ; A= pressed button + directions
1ld b,a ;B = pressed buttons + directions

; And release the controller
1d a, P1F_GET_NONE
1dh [rP1], a

; Combine with previous wCurKeys to make wNew Keys
1d a, [wCurKeys]

Unpricked - originals

Main loop - Input

O@®® 2 originals: vim main.asm

PaddleBounceDone:

call UpdateKeys

; First check if the left button is pressed

CheckLeft:
1d a, [wCurKeys]
and a, PADF_LEFT
jp z, CheckRight
Left:
; move the paddle one pixel to the left
1d a, [_OAMRAM+1]
dec a
cp a, 15
jp z, Main
1d [_OAMRAM+1], a
jp Main
CheckRight:
1d a, [wCurKeys]
and a, PADF_RIGHT
jp z, Main
Right:
; move the paddle one pixel to the left
1d a, [_OAMRAM+1]
inc a
cp a, 105
jp z, Main
1d [_OAMRAM+1], a
jp Main
; Copy bytes from one area to another
; aparam de: source
; aparam hl: destination
; apfram bc: lenght

npricked - originals

Main loop - Movement

O@®® 2 originals: vim main.asm

B wait until it's *not* VBlank
1d a, [rLY]
cp 144
jp nc, Main
WaitVBlank2:
1d a, [rLY]
cp 144
jp ¢, WaitVBlank2

;Add the ball's momentum to its position in OAM
1d a, [wBallMomentumX]

1d b, a

1d a, [_OAMRAM +5]

add a, b

1d [_OAMRAM +5], a

1d a, [wBallMomentumY]
1d b, a

1d a, [_OAMRAM +4]

add a, b

1d [_OAMRAM +4], a

BounceOnTop:
; Remember to offset the OAM position!
; (8, 16) in OAM coordinates is (@, @) on the screen.
1d a, [_OAMRAM + 4]
sub a, 16 + 1
dc, a
1d a, [_OAMRAM + 5]
sub a, 8
1d b, a
call GetTileByPixel ; Returns tile address in hl
1d a, [hl]

gb asm

't is the most low-level library.

Almost one-to-one with the asm but in Rust!

(R asm.rs
{R codegen.rs
R instr.rs

R mod.rs

Instructions are something like: asm.ld(...), asm.cp(...), ...

Link to an article that inspire me:

https://tinycomputers.io/posts/building-z80-roms-with-rust-a-modern-approach-to-retro-computing.html

b asm

unbrickedrs

®©O®® 2 bin: vimunbricked.rs

flse rust_boy::gb_asm::{Asm, Condition, Operand, Register};

fn main() {
let mut asm = Asm::new();

// Hardware include and constants
asm.include_hardware();

asm.def("BRICK_LEFT", 0x05);
asm.def("BRICK_RIGHT", 0x06);
asm.def("BLANK_TILE", 0x08);
asm.def("DIGIT_OFFSET", 0x1A);
asm.def("SCORE_TENS", 0x9870);
asm.def("SCORE_ONES", 0x9871);

// Header section
asm.section("Header", "ROMO[$100]1");
asm.jp("EntryPoint");

asm.ds("$150 - @", "0");

// Entry point

asm.label("EntryPoint");
asm.label("waitVBlank");
asm.ld_a_addr_def("rLY");

asm.cp_imm(144);
asm.jp_cond(Condition::C, "WaitVBlank");

// Turn off LCD
asm.ld_a(0);
asm.ld_addr_def_a("rLCDC");

// Copy tiles data

asm.ld_de_label("Tiles");

asm.ld_hl_label("$9000");
"unbricked.rs" 879L, 24318B

. This lib is more of a high-level and implements:

- A chunk system (Main, Functions, Tiles, etc.) so you can put code
from everywhere, and at the time of the generation are put in the

right section.
. Tile and tilemap utilities

- A sprite manager
- The initial attempt at an if statement.

gpb std

® ®® 2 rust-boy: vim src/binfunbricked_std/main.rs

// add("paddle" in WRAM)
// automatically manage the address ($8000 and after $8010)
asm.chunk(rust_boy::gb_asm: :Chunk::Tiles);

asm.emit_all(add_tiles("Tiles", tiles::TILES));
asm.emit_all(add_tiles("Ball", tiles::BALL));
asm.emit_all(add_tiles("Paddle", tiles::PADDLE));

asm.chunk(rust_boy::gb_asm: :Chunk: :Main);
asm.emit_all(cp_in_memory("Tiles", "$9000"));
asm.emit_all(cp_in_memory("Ball", "$8010"));
asm.emit_all(cp_in_memory("Paddle", "$8000"));
asm.emit_all(cp_in_memory("Tilemap", "$9800"));

//FLOW1 we continue with the main
asm.emit_all(initialize_objects_screen());

asm.emit_all(clear_objects_screen());

//Sprite managment

let mut sprite_manager = SpriteManager: :new();
sprite_manager.add_sprite(16, 128, 0, 0);
sprite_manager.add_sprite(32, 100, 1, 0);
asm.ld_a(1);
asm.ld_addr_def_a("wBallMomentumX");
asm.ld_a_label("-1");
asm.ld_addr_def_a("wBallMomentumY");
asm.emit_all(sprite_manager.draw());

L

asm.emit_all(turn_on_screen());
.1d_a(0b11100100);
.ld_addr_def_a("rBGP");
.1d_a(0b11100100);
.1d_addr_def_a("rOBP0");

gpb std
Utilities

® @®@® 2 rust-boy: vim src/gb_std/graphics/utility.rs

flse crate::gb_asm::{Asm, Condition, Instr, Operand, Register};

%000

// refactor code:
// - punt in the form of builder (like cp_in_memory)

pub fn add_tiles(label: &str, tiles: &[[&str; 8]]) -> Vec<Instr> {

let mut asm = Asm::new();
asm.label(label);
for tile in tiles {

for line in tile {

asm.dw(line);

}

}

asm.label(&format!("{}End", label));
asm.get_main_instrs()

il

fn add_tiles_2bpp(label: &str, path: &str) -> Vec<Instr> {
let mut asm = Asm::new();

asm.label(label);

asm.incbin(path);

asm.label(&format!("{}End", label));

asm.get_main_instrs()

il

fn add_tiles_tilemap(label: &str, path: &str) -> Vec<Instr> {
let mut asm = Asm::new();

asm.label(label);

asm.incbin(path);

asm.label(&format!("{}End", label));

asm.get_main_instrs()

}
"src/gb_std/graphics/utility.rs" 163L, 5212B

gpb std

[f statement

® ®@® 2 rust-boy: vim src/binfunbricked_std/main.rs

//{Bl refactorBounceDone
asm.comment (" TESTBOUNCEDONCE");
asm.emit_all(sprite_manager.get_sprite(0).unwrap().get_y(Register
asm.emit_all(sprite_manager.get_sprite(1).unwrap().get_y(Register
asm.add(Operand: :Reg(Register::A), Operand::Imm(5));
let if__ball_y_check = If::new(
IfCondition: :new(
ConditionOperand: :Register(Register::A),
ConditionOperand: :Register(Register::B),
rust_boy::gb_std::flow::ComparisonOp::E,

let mut bounce_x_check = Asm::new();
bounce_x_check.emit_all(sprite_manager.get_sprite(1).unwrap().get_x(Register
bounce_x_check.emit_all(sprite_manager.get_sprite(0).unwrap().get_x(Register
bounce_x_check.sub(Operand: :Reg(Register::A), Operand::Imm(8));

let if__ball_y_check = If::new(
IfCondition: :new(
ConditionOperand: :Register(Register::A),
ConditionOperand: :Register(Register::B),
rust_boy::gb_std::flow::ComparisonOp::LT,

let mut bounce_x_check 2 = Asm::new();
bounce_x_check_2.add(Operand: :Reg(Register::A), Operand::Imm(8 + 16));
let if__ball_x_check_2 = If::new(
IfCondition: :new(
ConditionOperand: :Register(Register::A),
ConditionOperand: :Register(Register::B),
rust_boy::gb_std::flow::ComparisonOp: :GE,
),
{

let mut bounce = Asm::new();

gpb std

Sprite manager

® ®@® 2 rust-boy: vim src/gb_std/graphics/sprites.rs

N

tile,
flags,
}

}
pub fn draw(&self) -> Vec<Instr> {
let mut asm = Asm::new();

asm.ld_a(self.y + 16)
.1d_hli_label("a")
.ld_a(self.x + 8)
.ld_hli_label("a")
.ld_a(self.tile)
.1d_hli_label("a")
.ld_a(self.flags)
.ld_hli_label("a");

asm.get_main_instrs()

(1]

fn move_left(&mut self, distance: u8) -> Vec<Instr> {

let mut asm = Asm::new();

asm.label("Left");

asm.ld_a_addr_def(&format!("_OAMRAM+{}", self.id * 4 + 1))
.sub(Operand: :Reg(Register::A), Operand::Imm(distance))
.ld_addr_def_a(&format!("_OAMRAM+{}", self.id * 4 + 1));

(AN

asm.label("LeftEnd");
asm.get_main_instrs()

fn move_right(&mut self, distance: u8) -> Vec<Instr> {

let mut asm = Asm::new();

asm.label("Right");
asm.ld_a_addr_def(&format!("_OAMRAM+{}", self.id * 4 + 1))

With gb_std we understood what we can level up:

If statements have to be simpler
The init instructions must be written in an automatic way

There are some functions that can be considered “Builtin
(UpdateKeys, WaitVBlank, Memcopy, etc.)

Make more managers (Tiles, Inputs, etc.)

Hide every reference to the memory address

rust oy

. ‘ . 382 rust-boy: vim src/bin/unbricked_rustboy/main.rs (-zsh) 381 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

/1]

pub struct RustBoy {
/// Internal assembly generator (hidden from user)
asm: Asm,

/// Tile manager with automatic VRAM allocation
pub tiles: TileManager,

/// Variable manager with automatic WRAM allocation
pub vars: VariableManager,

/// Sprite manager with automatic OAM and tile handling
pub sprites: SpriteManager,

/// Function registry for auto-including builtin functions
functions: FunctionRegistry,

/// Counter for generating unique if-statement labels
if_counter: usize,

/// Counter for generating unique general-purpose labels
label_counter: usize,

/// Custom constants defined by the user
constants: Vec<(String, String)>,

/// Init code to run before the main loop
init_code: Vec<Instr>,

/// Main loop code
main_loop_code: Vec<Instr>,

I// Animation delay value in frames (higher = slower animations)

rust oy

unbricked rs

o . ‘ X 3¥2 rust-boy: vim src/binfunbricked_rustboy/main.rs (-zsh) 381 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

fn mgin() {
let mut gb = RustBoy::new();

// CONSTANTS - No more manual DEF statements!

//

gb.define_const("BRICK_LEFT", "0x05")
.define_const("BRICK_RIGHT", "0x06")
.define_const("BLANK_TILE", "0x08")
.define_const("DIGIT_OFFSET", "Ox1A")
.define_const_hex("SCORE_TENS", 0x9870)
.define_const_hex("SCORE_ONES", 0x9871);

// TILES - Auto VRAM allocation!
//
// Background tiles go to $9000
gh.tiles
.add_background("Tiles", TileSource::from_raw(tiles::TILES));

// Tilemap goes to $9800
gb.tiles.add_tilemap("Tilemap", tilemap::TILEMAP);

// Sprites: tile + position + OAM in one call!
let paddle = gb.add_sprite("Paddle", TileSource::from_raw(tiles::PADDLE), 16, 128, 0);
let ball = gb.add_sprite("Ball", TileSource::from_raw(tiles::BALL), 32, 100, 0);

let _frame_counter = gb.vars.create_u8("wFrameCounter", 0);
let _cur_keys = gb.vars.create_u8("wCurKeys", 0);
let _new_keys = gb.vars.create_u8("wNewKeys", 0);

http://unbricked.rs

rust oy

unbricked rs

rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

// FUNCTIONS - Auto WRAM allocation!
//
gb.define_function(
"IswallTile",
is_specific_tile(
"IswallTile",
§["$00", "$01", "$02", "$04", "$05", "$06", "$07"1,

gb.define_function_fromf§
"CheckAndHandleBrick",
vec![
boxed(IfConst: :eq(
Call::with_args("GetTileByPixel", gb.sprites.get_pivot(ball, 0, 1)),
"BRICK_LEFT",
vec![
TileRef::set_tile_label("BLANK_TILE"),
TileRef::next_tile(),
TileRef::set_tile_label("BLANK_TILE"),
1,
)),
boxed(IfA: :eq(
"BRICK_RIGHT",
vec![
TileRef::set_tile_label("BLANK TILE"),
TileRef: :prev_tile(),
TileRef::set_tile_label("BLANK_TILE"),
1,
)),

http://unbricked.rs

rust oy

unbricked rs

rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

// Ball movement
gb.add_to_main_loop(gb.sprites.move_x_var(ball, "wBallMomentumX"));
gb.add_to_main_loop(gb.sprites.move_y_var(ball, "wBallMomentumY"));

// Bounce on top
gb.call_args("GetTileByPixel", gb.sprites.get_pivot(ball, 0, 1));
gb.add_to_main_loop(IfCall::is_true(
"IswallTile",
vec![
boxed(Call: :new("CheckAndHandleBrick")),
boxed(_ball_momentum_y.set(1)),
1,
));

// Bounce on right
gb.call_args("GetTileByPixel", gb.sprites.get_pivot(ball, -1, 0));
gb.add_to_main_loop(IfCall::is_true("IswallTile", _ball_momentum_x.set(-1)));

// Bounce on left
gb.call_args("GetTileByPixel", gb.sprites.get_pivot(ball, 1, 0));
gb.add_to_main_loop(IfCall::is_true("IswWallTile", _ball_momentum_x.set(1)));

// Bounce on bottom
gb.call_args("GetTileByPixel", gb.sprites.get_pivot(ball, 0, -1));
gb.add_to_main_loop(IfCall::is_true("IswWallTile", _ball_momentum_y.set(-1)));
gb.add_to_main_loop({

// make a debug label in as API

let mut 1bl_debug = Asm::new();

lb1_debug.label("PaddleBounce");

http://unbricked.rs

rust oy

unbricked rs

(o N X R ¥ ...boy: vim src/binfunbricked_rustboy/main.rs (-zsh) [1 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

// Paddle bounce
let paddle_bounce = If::eq(
gb.sprites.get_y(paddle),
gb.sprites.get_y(ball).plus(5),
If::1t(
gb.sprites.get_x(ball),
gb.sprites.get_x(paddle).minus(8),
If::ge(gb.sprites.get_x(ball), gb.sprites.get_x(paddle).plus(16), {
_ball_momentum_y.set(-1)
1),

Do
)
gb.add_to_main_loop(paddle_bounce);
gb.add_to_main_loop({
// make a debug label in as API
let mut 1bl_debug = Asm::new();
1b1_debug.label("PaddleBounceEND");
1bl_debug.get_main_instrs()
});
// Input handling
let mut inputs = InputManager: :new();
inputs.on_press(PadButton::Left, gb.sprites.move_left_limit(paddle, 1, 15));
inputs.on_press(
PadButton: :Right,
gb.sprites.move_right_limit(paddle, 1, 105),
);
gb.add_inputs(inputs);

// BUILD AND OUTPUT

//
println!("{}", gb.build());

http://unbricked.rs

® © @ Emulicious - 100% (60 fps)

® © @® Emulicious - 100% (60 fps)

® © ® Emulicious - 10C

® © @® Emulicious - 100% (60 fps)

L

rust boy at Fosdem!

(o] . @ <2 rust-boy: vim src/bin/fosdem/main.rs

fn main() {
let mut gb = RustBoy::new();

// Add 16x16 composite sprite (two 8x16 sprites side by side)
let player = gb.add_sprite_16x16(
"player",
TileSource::from_file("char.2bpp", 64),
TileSource::from_file("char-dx.2bpp", 64),
80,
72,
0,
);

// Add looping animations to the composite sprite (applies to both halves)
// add_composite_animation returns the animation index
// Animation order: front, back, left, right (frames 0-3, 4-7, 8-11, 12-15)
let anim_walk_front =
gb.sprites
.add_composite_animation(player, "playerWalkFront", 0, 3, AnimationType::Loop);
let anim_walk_back =
gbh.sprites
.add_composite_animation(player, "playerWalkBack", 4, 7, AnimationType::Loop);
let anim_walk_left =
gb.sprites
.add_composite_animation(player, "playerWalkLeft", 8, 11, AnimationType::Loop);
let anim_walk_right =
gh.sprites
.add_composite_animation(player, "playerWalkRight", 12, 15, AnimationType::Loop);

// Start with no animation (disabled)
gb.sprites
.set_composite_initial_animation(player, ANIM_DISABLED);

rust boy at Fosdem!

o . ‘ X2 rust-boy: vim src/bin/fosdem/main.rs (-zsh) rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

]
.concat(),
)i
inputs.on_press(
PadButton: :Right,
[
gb.sprites.move_composite_right_limit(player, 1, 150),
gb.sprites
.enable_composite_animation(player, anim_walk_right),
]
.concat(),
)6
inputs.on_press(
PadButton: :Up,
[
gb.sprites.move_composite_up_limit(player, 1, 0),
gh.sprites
.enable_composite_animation(player, anim_walk_back),
]
.concat(),
I
inputs.on_press(
PadButton: :Down,
[
gb.sprites.move_composite_down_limit(player, 1, 150),
gb.sprites
.enable_composite_animation(player, anim_walk_front),
]
.concat(),
)
gb.add_inputs(inputs);
println!("{}", gb.build());

- Refactor the code.

. Try to write new examples to find new builtin functions

- Implement the sound manager.

An assembler and linker to
generate the gb ROM

rust_boy
RustBoy gb_sta
gb_asm

A parser / AST / etc. for Rust Rust parser

RustBoy

An assembler and linker to
generate the gb ROM

S\

Thank youw

0 https://github.com/ffex
g https://mastodon.social/affex

. ® '
rj https://ww.1instagram.com/ffex_tech/

https://ww .linkedin.com/in/federico-bassini/

rust-boy

