
ffex @ fosdem2026

A Rust journey into Game Boy dev

Rustboy

01. Introduction

My gameboys
My story

Me and the gameboy
My story

In the daily routine

The not-so-exciting life of a programmer

• We have a problem

• Find and replicate the problem

• Search for the problem online

• Ask AI about the problem

• Copy a solution of the problem

• Test the solution

• Is it the best solution?

• Search for the best solution online

• …….

Boom!

Fosdem 2025

02. Hardware

All the game boys

All the game boys

DMG

MGB CGB

gb

gb gbc

gba

Pandocs

This document, started in early 1995, is considered the single most
comprehensive technical reference to Game Boy available to the public.

Link: https://gbdev.io/pandocs/

Memory Map

gb, gbc, gba

SoC

• Game Boys use only a single integrated System-on-a-Chip (SoC)

• SoC includes the processor (CPU) core, some memories, and various peripherals

• The Game Boy SoC is sometimes called the “CPU”

More about CPU: https://gekkio.fi/files/gb-docs/gbctr.pdf
Photos: https://raphaelstaebler.medium.com/

https://gekkio.fi/files/gb-docs/gbctr.pdf

gb, gbc

CPU
• The CPU core in the Game Boy SoC is a custom Sharp design without a name.

More about CPU: https://gekkio.fi/files/gb-docs/gbctr.pdf
Photos: https://www.copetti.org/writings/consoles/game-boy/

• Some sources claim Game Boy uses a “modified” Zilog Z80
or Intel 8080.

• Using old datasheets and databooks, the core has been
identified to be a Sharp SM83.

https://gekkio.fi/files/gb-docs/gbctr.pdf

03. Software

ASM

https://gbdev.io/gb-asm-tutorial/

Rednex Game Boy Development System

ASM

• Four programs to cover the whole compilation pipeline:

• Image converter / Assembler / Linker / Fixer

https://rgbds.gbdev.io/

GBDK-2020 - Game Boy Development Kit

C

https://gbdk.org/

GB Studio

• It is the most advanced retro game creator. It is a complete engine to create complete games. It
is based on GBDK and GBVM

• https://www.gbstudio.dev/

04. …and Rust?

Emulators! Emulators everywhere!

What we have
• Mooneye GB – A Game Boy research project and emulator written in Rust

• Code: https://github.com/Gekkio/mooneye-gb

• Boytacean – Full-featured Rust emulator with Web, SDL & Libretro frontends
• Code: https://github.com/joamag/boytacean

• Retro Boy – Cycle-accurate emulator compiled to WebAssembly
• Code: https://github.com/smparsons/retroboy

• Wasm-GB – Game Boy emulator in WebAssembly + WebGL 2.0 (Rust)
• Code: https://github.com/andrewimm/wasm-gb

• gameboy – Game Boy emulator written in Rust
• Code: https://github.com/raphamorim/gameboy

https://github.com/Gekkio/mooneye-gb
https://github.com/joamag/boytacean
https://github.com/smparsons/retroboy
https://github.com/andrewimm/wasm-gb
https://github.com/raphamorim/gameboy

Crates for gba

What we have

• There are some crates to make games for gba:

• gba

• agb

• Others project educational / list of utilities

• As said, the gba has a different architecture and a different processor. gba have an ARM CPU.

By zlfn

Rust-GB

• Is a project work in progress…

• And try to obtain the build with a “workaround.”

1. The Rust compiler can generate LLVM-IR for the ATMega328

2.LLVM-IR can be converted in C with llvm-cbe

3.C compiled to Z80 assembly with sdasgb

4.Z80 Assembly can be assembled into GBZ80 with sdasgb

5.GBZ80 object code can be linked in a ROM gb with GBDK

•There is another project by zlfn: cranelift-z80

https://github.com/zlfn/rust-gb

https://github.com/zlfn/cranelift-z80

05. Rustboy

The idea

• We have in front of us only one CPU…

• Can we do a specific Rust compiler for the SM83?

• Great idea! I always develop a compiler!

https://github.com/ffex/rust-boy

Proof of concept

PoC

RGBDS

ASM

gb_asm

gb_std

rust_boy{
{To speed up the development, I put a solid

working base.

RustBoy

Unbricked - an Arkanoid copy

How show results?

• In gbdev.io, as an example to illustrate how to create games in asm, the initial example is a copy
of the famous Arkanoid.

• This example is important to see what happens when we go up to the high level to the code

• So let me explain some part of this game in asm

http://gbdev.io

Inits

Unbricked

Variables

Unbricked

Tiles and Tilemap

Unbricked

Memcopy

Unbricked

Functions

Unbricked

Main loop - Input

Unbricked

Main loop - Movement

Unbricked

gb_asm

• It is the most low-level library.

• Almost one-to-one with the asm but in Rust!

• Instructions are something like: asm.ld(…), asm.cp(…), …

• Link to an article that inspire me:

https://tinycomputers.io/posts/building-z80-roms-with-rust-a-modern-approach-to-retro-computing.html

unbricked.rs

gb_asm

gb_std

• This lib is more of a high-level and implements:

• A chunk system (Main, Functions, Tiles, etc.) so you can put code from everywhere, and at the
time of the generation are put in the right section.

• Tile and tilemap utilities

• A sprite manager

• The initial attempt at an if statement.

gb_std

Utilities

gb_std

If statement

gb_std

rust_boy

• With gb_std we understood what we can level up:

• If statements have to be simpler

• The init instructions must be written in an automatic way

• There are some functions that can be considered “BuiltIn (UpdateKeys, WaitVBlank, Memcopy,
etc.)

• Make more managers (Tiles, Inputs, etc.)

• Hide every reference to the memory address

unbricked.rs

rust_boy

http://unbricked.rs

unbricked.rs

rust_boy

http://unbricked.rs

unbricked.rs

rust_boy

http://unbricked.rs

unbricked.rs

rust_boy

http://unbricked.rs

The fosdem example

Try rust_boy!

at Fosdem!

rust_boy

at Fosdem!

rust_boy

Improvment

What’s next?

• Refactor the code.

• Try to write new examples to find new builtin functions

• Implement the sound manager.

Low-level

What’s next?

RGBDS

ASM

gb_asm

gb_std

rust_boy{
{An assembler and linker to generate the

gb ROM

RustBoy

Assembler/linker

High-level

What’s next?

Rust parser

RGBDS

ASM

gb_asm

gb_std

rust_boy{
{An assembler and linker to generate the

gb ROM

RustBoy

Assembler/linker

One more thing…

rust_boy

GBStudioCustom Engine

Thank you

https://github.com/ffex/rust-boy

 https://github.com/ffex

 https://www.linkedin.com/in/federico-bassini/

 https://mastodon.social/@ffex

 https://www.instagram.com/ffex_tech/

