Rustboy

A Rust journey into Game Boy dev

ffex @ fosdem2026 Q

21, InmnmtroducTion

My story

My gameboys

FNOS4YO N OLVIEEYS VIHSdY

LATO ESTERNO

My story

Me and the gamepboy

- We have a problem
- Find and replicate the problem
- Search for the problem online

- Ask Al about the problem

- Copy a solution of the problem

« Test the solution

 |s it the best solution?

- Search for the best solution online

Fosdem 2025

Boom!

b2, Havrdwuware

ALl the game boys

Source: Nintendo Note: Diagrams not to scale, dates refer to European release (excluding the Game Boy, Game Boy Pocket) Press Association Graphic Curl’ys G PC World

ALl the game boys

Source: Nintendo Note: Diagrams not to scale, dates refer to European release (excluding the Game Boy, Game Boy Pocket) Press Association Graphic Curl’ys G PC World

This document, started in early 1995, is considered the single most
comprehensive technical reference to Game Boy available to the public.

Link: https://gbdev.io/pandocs/

Pan Docs

Foreword

This document, started in early 1995, is considered the single most comprehensive technical
reference to Game Boy available to the public.

You are reading a new version of it, maintained in the Markdown format and enjoying renewed
community attention, correcting and updating it with recent findings. To learn more about the legacy
and the mission of this initiative, check History.

SCOPE

The information here is targeted at homebrew development. Emulator developers may be also
interested in the Game Boy: Complete Technical Reference document.

Contributing

Memory Map

Start
0000

4000

8000
AQ00
C000
D000

EQ0O

FEQO

FEAQ

FFQO
FF80

FFFF

End
3FFF

7FFF

9FFF
BFFF
CFFF
DFFF

FDFF

FE9F

FEFF

FF7F
FFFE

FFFF

Description
16 KiB ROM bank 00

16 KiB ROM Bank @1-NN

8 KiB Video RAM (VRAM)
8 KiB External RAM

4 KiB Work RAM (WRAM)
4 KiB Work RAM (WRAM)

Echo RAM (mirror of
C000-DDFF)

Object attribute memory
(OAM)

Not Usable

I/O Registers
High RAM (HRAM)

Interrupt Enable register
(IE)

Notes
From cartridge, usually a fixed bank

From cartridge, switchable bank via
mapper (if any)

In CGB mode, switchable bank 0/1
From cartridge, switchable bank if any

In CGB mode, switchable bank 1-7

Nintendo says use of this area is
prohibited.

Nintendo says use of this area is
prohibited.

L !
A ;
L !
1
b

Al 6P06
NYdv(l
SRAVHS

T-NL1¥92ZSHT
T -
€

DMG -CPU

© 1989 Nintendo

A :A;d‘ ‘fiéf -\ JAPAN
gb, gbc, gha — IS E

iz B0 004%7 L

Z it

LH5264TN-L

SHARP
" JAPAN

9049 1Y

nnnnnnnnnnnn

..........

- Game Boys use only a single integrated System-on-a-Chip (SoC)
SoC includes the processor (CPU) core, some memories, and various peripherals

The Game Boy SoC is sometimes called the “CPU”

More about CPU: https://gekkio fi/files/ab-docs/abctrpdf
Photos: https://raphaelstaeblermedium.com/

https://gekkio.fi/files/gb-docs/gbctr.pdf

CPU

gb, ghbc

» The CPU core in the Game Boy SoC is a custom Sharp design without a name.

. Some sources claim Game Boy uses a ‘modified” Zilog Z80
or Intel 8080.

. Using old datasheets and databooks, the core has been
identified to be o Sharp SM83.

More about CPU: https://gekkioli/files/gb-docs/gbctrpd!

Photos: https://www.copettl.org/writings/consoles/garme-pboy/

miiﬁu nﬁi\‘i U i g 5

=

.._..../~

W —

©1989 Nintend® ~— "

JAPAN :::*

9216 D ———

--\
sppRPRRP

, | SR ummm “ﬂ/

X) 4.1 94 30 4MHz “

l'
.‘

https://gekkio.fi/files/gb-docs/gbctr.pdf

24, SoTTwuware

QO O® 2 fosdem:vimmain.asm

BNCLUDE "hardware.inc"
SECTION "Header", ROMO[$100]
jp EntryPoint

ds $150 - @, ©

EntryPoint:

call WaitVBlank

da, 0

1d [rLCDC], a

1d de, player_right

1d hl, $8400

1d bc, player_rightEnd - player_right
call Memcopy

1ld de, player_left

1d hl, $8000

1ld bc, player_leftEnd - player_left
call Memcopy

da, 0

ld b, 160

1d hl, _OAMRAM

ClearOam:

1d [hl1i], a

dec b

jp nz, ClearOam

1d hl, _OAMRAM

1ld a, 88

1d [hl1], a

1d a, 88
1d [hl1], a
da, 0
1d [hl1], a
lda, 0

1d [hl1i], a

https://gbdev.io/gb-asm-tutorial/

ASM

Rednex Game Boy Development System

- Four programs to cover the whole compilation pipeline:

- Image converter / Assembler / Linker / Fixer

https://rgbds.gbdev.io/

III RGBDS Docs Resources FAQ Install violvy €) ©o- Q

RGBDS

A free assembler/linker package for the Game Boy and Game Boy Color

gbdk-2020

An updated version of GBDK, C compiler,
assembler, linker and set of libraries for
the Nintendo Gameboy, Nintendo
Entertainment System, Sega Master
System, Sega Game Gear.

View the Project on GitHub
gbdk-2020/gbdk-2020

GBDK-2020

GBDK is a cross-platform development kit for sm83, z80 and 6502 based
gaming consoles. It includes libraries, toolchain utilities and the SDCC C
compiler suite.

Supported Consoles: (see docs)

e Nintendo Game Boy / Game Boy Color
e Analogue Pocket

e Sega Master System & Game Gear

e Mega Duck / Cougar Boy

e NES

Experimental consoles (not yet fully functional)

e MSXDOS

GB Studio

. |t is the most advanced retro game creator. It is a complete engine to create complete games. It
s based on GBDK and GBVM

https://www.gbstudio.dev/

u GB Studio XA English + About Docs GitHub@ Download ® Q

A quick and easy to use drag
and drop retro game creator for
your favourite handheld video
game system.

Available on Windows, Mac and Linux.

Download on Itch.io

AL 3

cand Bus 172

What we have

Emulators! Emulators everywhere!

- Mooneye GB - A Game Boy research project and emulator written in Rust
- Code: https://github.com/Gekkio/mooneye-gb

- Boytacean - Full-featured Rust emulator with Web, SDL & Libretro frontends
- Code: https://aithub.com/joamag/boytacean

- Retro Boy - Cycle-accurate emulator compiled to WebAssembly
- Code: https://github.com/smparsons/retroboy

- Wasm-GB - Game Boy emulator in WebAssembly + WebGL 2.0 (Rust)
- Code: https://github.com/andrewimm/wasm-gb

- gameboy - Game Boy emulator written in Rust

- Code: https://github.com/raphamorim/gameboy

https://github.com/Gekkio/mooneye-gb
https://github.com/joamag/boytacean
https://github.com/smparsons/retroboy
https://github.com/andrewimm/wasm-gb
https://github.com/raphamorim/gameboy

What we have

Crates for gba

- There are some crates to make games for gba:
e gba

e agb

- Others project educational / list of utilities

';O - il En

. As said, the gba has a different architecture and a different processor. gbo have"o ARM CPU.

Rust-GB

By zlin

- |S 0 project work in progress...

- And try to obtain the build with a “workaround.”

1. The Rust compiler can generate LLVM-IR for the ATMega328
2.LLVM-IR can be converted in € with [lvm-cbe

3.€C compiled to Z80 assembly with sdasgb
4.Z80 Assembly can be assembled into GBZ80 with sdasgb
5.GBZ80 object code can be linked in a ROM gb with GBDK

eThere is another project by zltn: cranelift-z80

https://github.com/zlfn/rust-gb

https://github.com/zlfn/cranelift-z80

0. Hus Thhoy

- We have in front of us only one CPU...
- Can we do a specific Rust compiler for the SM83"7

- Greatidea! | always develop a compiler!

https://github.com/ffex/rust-boy

RustBoy

To speed up the development, | put a solid
working base.

{
{

rust_boy
gb_std
gb_asm
ASM
RGBDS

How show results?

Unbricked - an Arkanoid copy

- |In gbdev.io, as an example to illustrate how to create games in asm, the initial example is a copy
of the famous Arkanoid.

. This example is important to see what happens when we go up to the high level to the code

@® Emulicious - 100% (60 fps)

- S0 let me explain some part of this game in asm

http://gbdev.io

BINCLUDE "hardware.inc"

o
n r | DEF BRICK LEFT EQU $05
1 (DEF BRICK RIGHT EQU $06
DEF BLANK TILE EQU $08
, DEF DIGIT OFFSET EQU $1A
IIletES DEF SCORE_TENS EQU $9870

DEF SCORE_ONES EQU $9871
jp EntryPoint

EntryPoint:

WaitVBlank:

1d a, [rLY]

cp 144

jp ¢, WaitVBlank

: Turn off LCD
da, 0
1d [rLCDC], a

; Copy tiles data
1ld de, Tiles
1d hl, $9000
call Memcopy

; Copy the tilemap
"main.asm" 757L, 15183B

O@®® <2 originals: vim main.asm

SECTION "Header", ROMO[$100]

ds $150 - @, 0 ; room for header

1d bc, TilesEnd - Tiles

O@®® <2 originals: vim main.asm

Paddle:

e dw ~13333331

n r | dw 30000003

1 (dw 13333331
dw 00000000
: dw 00000000
XJQﬂJflEik)lEBES dw 00000000
dw 00000000
dw 00000000
PaddleEnd:
Ball:
dw 00033000
dw 00322300
dw 03222230
dw 03222230
dw 00322300
dw 00033000
dw 00000000
dw 00000000
BallEnd:

SECTION "Counter”, WRAMO
wFrameCounter: db

SECTION "Input Variables", WRAMO
wCurKeys: db
wNewKeys: db

SECTION "Ball Data", WRAMO
wBallMomentumX: db
wBallMomentumY: db

SECTION "Score", WRAMO
WScore: db

dw
dw
dw
dw

Unbricked

Tiles and Tilemap

dw
dw
dw
dw
dw
dw
dw
dw

dw
dw
dw
dw
dw
dw
dw
dw
TilesEnd:

Tilemap:

"33300333
"33000333
"33000333
"33333333

"33333333
"33000033
"30333003
"33000033
"30333003
"30333003
"33000033
"33333333

"33333333
"33000033
"30330003
"30330003
"33000003
"33330003
"33000033
"33333333

db $00, $01,
0,0,0,0,0,0,0,0,0,0
db $04, $05,
0,0,0,0,0,0,0,0,0,0
db $04, $08,
0,0,0,0,0,0,0,0,0,0
[b $04, $05,
0,0,0,0,0,0,0,0,0,0

O@®® 2 originals: vim main.asm

$03, $03,
$03, $03,
$03, $03,

$03, $03,

O@®® 2 originals: vim main.asm

d a, 0
1d [rLCDC], a

; Copy tiles data
1d de, Tiles

Unbricked

:b/[&?l?fl(j()}:f}f 1d bc, TilestEnd - Tiles

call Memcopy

; Copy the tilemap

1d de, Tilemap

1d hl, $9800

1d bc, TilemapEnd - Tilemap
call Memcopy

; Copy the paddle tile

1ld de, Paddle

1d hl, $8000

1ld bc, PaddleEnd - Paddle
call Memcopy

; Copy the balltile
1ld de, Ball

1d hl, $8010

1d bc, BallEnd - Ball
call Memcopy

» 1nitialize OAM
da, 0

ld b, 160

1d hl, _OAMRAM
ClearOam:

O@®® 2 originals: vim main.asm

B Jjp Main
— ; Copy bytes from one area to another
n r | ; aparam de: source
1 (» aparam hl: destination
; aparam bc: lenght
: Memcopy:
Functions U a, [de]
1d [hli], a
inc de
dec bc
da, b
or a, ¢
jp nz, Memcopy
ret
UpdateKeys:
; poll hald the controller
1d a, P1F_GET_BTN
call .onenibble
ldb, a; B7-4 = 1; B3-0 = unpressed button

» poll the other half

1d a, P1F_GET_DPAD

call .onenibble

swap a ; A7-4 upressed direction; a3-0 =1
xor a, b ; A= pressed button + directions
1ld b,a ;B = pressed buttons + directions

s And release the controller
1ld a, P1F_GET_NONE
1dh [rP1], a

; Combine with previous wCurKeys to make wNew Keys
1d a, [wCurKeys]

O@®® <2 originals: vim main.asm

PaddleBounceDone:

Unbricked e

: First check i1if the left button 1s pressed
, CheckLeft:
Main loop - Input U a, [wCurkeys]
and a, PADF_LEFT
jp z, CheckRight
Left:
: move the paddle one pixel to the left
1d a, [_OAMRAM+1]
dec a
cp a, 15
Jp z, Main
1d [_OAMRAM+1], a
jp Main
CheckRight:
1ld a, [wCurKeys]
and a, PADF_RIGHT
jp z, Main
Right:
: move the paddle one pixel to the left
1d a, [_OAMRAM+1]
inc a
cp a, 105
Jp z, Main
1d [_OAMRAM+1], a
jp Main
, Copy bytes from one area to another
, aparam de: source
, aparam hl: destination
; apBram bc: lenght

O@®® 2 originals: vim main.asm

B wait until it's *xnot* VBlank
1d a, [rLY]

cp 144

jp nc, Main

WaitVBlank2:

1d a, [rLY]

cp 144

jp ¢, WaitVBlank2

Unbricked

Main loop - Movement

:Add the ball's momentum to 1ts position in OAM
1d a, [wBallMomentumX]

1d b, a

1d a, [_OAMRAM +5]

add a, b

1d [_OAMRAM +5], a

1d a, [wBallMomentumY]
1d b, a

1d a, [_OAMRAM +4]

add a, b

1d [_OAMRAM +4], a

BounceOnTop:

: Remember to offset the OAM position!

+ (8, 16) in OAM coordinates is (@, @) on the screen.
1d a, [_OAMRAM + 4]

sub a, 16 + 1

ld ¢, a

1d a, [_OAMRAM + 5]

sub a, 8

1d b, a

call GetTileByPixel ; Returns tile address in hl
1d a, [hl]

gpb_asm

. |t is the most low-level library.

. Almost one-to-one with the asm but in Rust!

. Instructions are something like: asm.ld(...), asm.cp(...), ...

- Link to an article that inspire me:

https://tinycomputers.io/posts/building-z80-roms-with-rust-a-modern-approach-to-retro-computing.html|

@ O®@® 2 bin: vimunbricked.rs

lse rust_boy::gb_asm::{Asm, Condition, Operand, Register};

m fn main() {
let mut asm = Asm::new();

: // Hardware include and constants
unbrlckedrs asm.include_hardware();
asm.def("BRICK LEFT", 0x05);
asm.def("BRICK RIGHT", 0x06);
asm.def("BLANK _TILE", 0x08);
asm.def("DIGIT OFFSET", 0Ox1A);
asm.def("SCORE_TENS", 0x9870);
asm.def("SCORE_ONES", 0x9871);

// Header section
asm.section("Header", "ROMO[$100]");
asm.jp("EntryPoint");

asm.ds("$150 - @", "0");

// Entry point

asm.label("EntryPoint");
asm.label("waitVBlank");
asm.ld_a_addr_def("rLY");
asm.cp_imm(144);
asm.jp_cond(Condition::C, "WaitVBlank");

// Turn off LCD
asm.ld_a(0);
asm.ld_addr_def_a("rLCDC");

// Copy tiles data
asm.ld_de_label("Tiles");
asm.ld_h1l_label("$9000");
"unbricked.rs" 879L, 24318B

- This lib is more of a high-level and implements:

- A chunk system (Main, Functions, Tiles, etc.) so you can put code from everywhere, and at the
time of the generation are put in the right section.

- Tile and tilemap utilities
» A sprite manager

- The initial attempt at an if statement.

® ®@® 32 rust-boy:vim src/binfunbricked_std/main.rs
// add("paddle" in WRAM)

// automatically manage the address ($8000 and after $8010)
g b S t d asm.chunk(rust _boy::gb_asm::Chunk::Tiles);

asm.emit_all(add_tiles("Tiles", tiles::TILES));
asm.emit_all(add_tiles("Ball", tiles::BALL));
asm.emit_all(add_tiles("Paddle", tiles::PADDLE));

asm.chunk(rust_boy::gb _asm: :Chunk::Main);
asm.emit_all(cp_in_memory("Tiles", "$9000"));
asm.emit_all(cp_in_memory("Ball", "$8010"));
asm.emit_all(cp_in_memory("Paddle", "$8000"));
asm.emit_all(cp_in_memory("Tilemap", "$9800"));

//FLOW1 we continue with the main
asm.emit_all(initialize_objects_screen());
asm.emit_all(clear_objects_screen());

//Sprite managment

let mut sprite_manager = SpriteManager::new();
sprite_manager.add_sprite(16, 128, 0, 0);
sprite_manager.add_sprite(32, 100, 1, 0);
asm.ld_a(1);
asm.ld_addr_def_a("wBallMomentumX");
asm.ld_a_label("-1");
asm.ld_addr_def_a("wBallMomentumY");
asm.emit_all(sprite_manager.draw());

asm.emit_all(turn_on_screen());
asm.ld_a(0b11100100);
asm.ld_addr_def_a("rBGP");
asm.ld_a(0b11100100);
Blsm.1d_addr_def_a("rOBP0");

®O®@® 32 rust-boy:vim src/gb_std/graphics/utility.rs

Hse crate::gb _asm::{Asm, Condition, Instr, Operand, Register};

000
// refactor code:

// - punt in the form of builder (like cp_in_memory)

[v]tilitieafg pub fn add_tiles(label: &str, tiles: &[[&str; 8]]) -> Vec<Instr> {
let mut asm = Asm::new();
asm.label(label);

for tile in tiles {
for line in tile {
asm.dw(line);
}
}

asm.label(&format!("{}End", label));
asm.get_main_instrs()

pub fn add_tiles_2bpp(label: &str, path: &str) -> Vec<Instr> {
let mut asm = Asm::new();
asm.label(label);
asm.incbin(path);
asm.label(&format!("{}End", label));
asm.get_main_instrs()

pub fn add_tiles_tilemap(label: &str, path: &str) -> Vec<Instr> {
let mut asm = Asm::new();
asm.label(label);
asm.incbin(path);
asm.label(&format!("{}End", label));
asm.get_main_instrs()

}

"src/gb _std/graphics/utility.rs" 163L, 5212B

ob std

[f statement

®®@® 2 rust-boy:vim src/binfunbricked_std/main.rs

//JABlY refactorBounceDone
comment("TESTBOUNCEDONCE")

asi.

asm.
asm.
.add(Operand: :Reg(Register:

asm
let

emit_all(sprite_manager.get_sprite(0).unwrap().get_y(Register::B));
emit_all(sprite_manager.get_sprite(1).unwrap().get_y(Register::A));
:A), Operand::Imm(5));

if __ball_y check = If::new(
IfCondition: :new(

ConditionOperand: :Register(Register::A),
ConditionOperand: :Register(Register::B),
rust _boy::gb _std::flow::ComparisonOp::E,

let mut bounce _x_check = Asm::new();

bounce_x_check.emit_all(sprite_manager.get_sprite(1).unwrap().get_x(Register::
bounce_x_check.emit_all(sprite_manager.get_sprite(0).unwrap().get_x(Register::
bounce_x_check.sub(Operand: :Reg(Register::A), Operand::Imm(8));

let if__ball_y check = If::new(
IfCondition: :new(

ConditionOperand: :Register(Register::A),
ConditionOperand: :Register(Register::B),
rust _boy::gb std::flow::ComparisonOp::LT,

let mut bounce x check 2

bounce_x_check_2.add(Operand: :Reg(Register:

let 1f__ball _x_check 2 =
IfCondition: :new(

ConditionOperand:
ConditionOperand:
rust _boy::gb _std:
)
{

let mut bounce

= Asm: :new();
If::new(
:Register(Register::A),

:Register(Register::B),
: flow: :ComparisonOp: :GE,

= Asm: :new();

:A), Operand::Imm(8 + 16));

- With gb_std we understood what we can level up:

T statements have to be simpler

The init instructions must be written in an automatic way

There are some functions that can be considered “Builtin (UpdateKeys, WaitVBlank, Memcopy,
etc.)

Make more managers (Tiles, Inputs, etc.)

Hide every reference to the memory address

o ‘ ‘ 32 rust-boy: vim src/bin/unbricked_rustboy/main.rs (-zsh) 381 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

fn mgin() {
let mut gb = RustBoy::new();

// Gib GED GES GES GED GO GED GED GED GED GED GED GED GED GNP GED D
// CONSTANTS - No more manual DEF statements!

FUS T _ DOy

w gb.define_const("BRICK_LEFT", "0x05")

.define_const("BRICK RIGHT", "0x06")
.define_const("BLANK TILE", "0x08")
.define_const("DIGIT OFFSET", "Ox1A")
.define_const_hex("SCORE _TENS", 0x9870)
.define_const_hex("SCORE _ONES", 0x9871);

// b Can GEn GEn GEn GED Gb GED GEn Gmn Gun Gmn e
// TILES - Auto VRAM allocation!

// b CEn GEn GED GuD GED Gun Gme Gmn Gmn e
// Background tiles go to $9000

gb.tiles

.add_background("Tiles", TileSource::from_raw(tiles::TILES));

// Tilemap goes to $9800
gb.tiles.add_tilemap("Tilemap", tilemap::TILEMAP);

// Sprites: tile + position + OAM in one call!
let paddle = gb.add_sprite("Paddle", TileSource::from_raw(tiles::PADDLE), 16, 128, 0);
let ball = gb.add_sprite("Ball", TileSource::from_raw(tiles::BALL), 32, 100, 0);

e
e

let _frame_counter = gb.vars.create_u8("wFrameCounter", 0);
let _cur_keys = gb.vars.create_u8("wCurKeys", 0);
let _new_keys = gb.vars.create_u8("wNewKeys", 0);

http://unbricked.rs

rust-boy: vim src/binfunbricked_rustboy/main.rs (-zsh) 381 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

I

r u S t b O y // FUNCTIONS - Auto WRAM allocation!
V= =c= === —====—====—==c=—==—=—==—=—e s

gb.define_function(
, "IswWallTile",
unorickedrs is_specific_tile(
- "IswWallTile",
&["$00", "$01", "$02", "$04", "$05", "$06", "$07"],
),
);
gb.define_function_from§
"CheckAndHandleBrick",
vec![
boxed(IfConst: :eq(
Call::with_args("GetTileByPixel", gb.sprites.get_pivot(ball, 0, 1)),
"BRICK LEFT",
vec![
TileRef::set_tile label("BLANK TILE"),
TileRef: :next_tile(),
TileRef: :set_tile_label("BLANK TILE"),
1,
),
boxed(IfA: :eq(
"BRICK_RIGHT",
vec![
TileRef::set_tile_label("BLANK TILE"),
TileRef::prev_tile(),
TileRef::set_tile_label("BLANK TILE"),
1,

http://unbricked.rs

rust_boy

unbricked rs

// ==========s=ssssssssssssssssssssmmmmmmas
// ===========sssssssssssssssssssssmmmmmmas

// Ball movement
gb.add_to_main_loop(gb.sprites.move_x_var(ball, "wBallMomentumX"));
gb.add_to_main_loop(gb.sprites.move_y_var(ball, "wBallMomentumY"));

// Bounce on top
gb.call_args("GetTileByPixel", gb.sprites.get_pivot(ball, 0, 1));
gb.add_to_main_loop(IfCall::is_true(
"IsWallTile",
vec![
boxed(Call: :new("CheckAndHandleBrick")),
boxed(_ball _momentum_ y.set(1)),
I,
));

// Bounce on right
gb.call_args("GetTileByPixel", gb.sprites.get_pivot(ball, -1, 0));
gb.add_to_main_loop(IfCall::is_true("IswallTile", _ball_momentum_x.set(-1)));

// Bounce on left
gb.call_args("GetTileByPixel", gb.sprites.get_pivot(ball, 1, 0));
gb.add_to_main_loop(IfCall::is_true("IswallTile", _ball_momentum_x.set(1)));

// Bounce on bottom
gb.call_args("GetTileByPixel", gb.sprites.get_pivot(ball, 0, -1));
gb.add_to_main_loop(IfCall::is_true("IswallTile", _ball _momentum_y.set(-1)));
gb.add_to_main_loop({

// make a debug label in as API
let mut 1bl _debug = Asm::new();
llbl_debug.label("PaddleBounce");

rust-boy: vim src/bin/unbricked_rustboy/main.rs (-zsh) 381 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

http://unbricked.rs

rust_boy

unbricked rs

o ‘ ‘ 32 ...boy: vim src/binfunbricked_rustboy/main.rs (-zsh) [381 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

// Paddle bounce
let paddle_bounce = If::eq(
gb.sprites.get_y(paddle),
gb.sprites.get_y(ball).plus(5),
If::1t(
gb.sprites.get_x(ball),
gb.sprites.get_x(paddle).minus(8),
If::ge(gb.sprites.get_x(ball), gb.sprites.get_x(paddle).plus(16), {
_ball_momentum_y.set(-1)
})’

),
)5
gb.add_to_main_loop(paddle_bounce);
gb.add_to_main_loop({
// make a debug label in as API
let mut 1bl _debug = Asm::new();
1b1l_debug.label("PaddleBounceEND");
1bl_debug.get_main_instrs()
);
// Input handling
let mut inputs = InputManager: :new();
inputs.on_press(PadButton::Left, gb.sprites.move_left_limit(paddle, 1, 15));
inputs.on_press(
PadButton: :Right,
gb.sprites.move_right_limit(paddle, 1, 105),
);
gb.add_inputs(inputs);

// ======================s======s==========
// BUILD AND OUTPUT

// ======================ss======s=========
println!("{}", gb.build());

http://unbricked.rs

® © @ Emulicious - 100% (60 fps)
® © ® Emulicious - 100% (60 fps)

® © @® Emulicious - 100% (60 fps)

g ® © ® Emulicious - 100% (59 fp

rust_boy

at Fosdem!

fn main() {

let mut gb = RustBoy::new();

// Add 16x16 composite sprite (two 8x16 sprites side by side)
let player = gb.add_sprite_16x16(
"player”,
TileSource::from_file("char.2bpp", 64),
TileSource::from_file("char-dx.2bpp", 64),
80,
72,
0,
J)§

// Add looping animations to the composite sprite (applies to both halves)
// add_composite_animation returns the animation index
// Animation order: front, back, left, right (frames 0-3, 4-7, 8-11, 12-15)
let anim_walk front =

gb.sprites

.add_composite_animation(player, "playerWalkFront", 0, 3, AnimationType:

let anim_walk _back =

gb.sprites

O ' ‘ 32 rust-boy: vim src/bin/fosdem/main.rs (-zsh) 381 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

:Loop);

.add_composite_animation(player, "playerWalkBack", 4, 7, AnimationType::Loop);

let anim_walk _left =
gb.sprites
.add_composite_animation(player, "playerWalkLeft", 8, 11, AnimationType:
let anim_walk_right =
gb.sprites

.add_composite_animation(player, "playerWalkRight", 12, 15, AnimationType:

// Start with no animation (disabled)
gb.sprites
.set_composite_initial_animation(player, ANIM_DISABLED);

$25830838540¢

TH3ENDRRRN2 RR

:Loop);

:Loop);

O ‘ ‘ 32 rust-boy: vim src/bin/fosdem/main.rs (-zsh) 381 rust-boy: vim src/rust_boy/rustboy.rs (-zsh)

]

.concat(),

rust_boy [Eee—-—

PadButton: :Right,

[
at FOS d em ! gb.sprites.move_composite_right_limit(player, 1, 150),
gb.sprites
.enable_composite_animation(player, anim_walk_right),
]
.concat(),

)
inputs.on_press(
PadButton: :Up,

[
gb.sprites.move_composite_up_limit(player, 1, 0),
gh.sprites
.enable_composite_animation(player, anim_walk_back),
]
.concat(),

);
inputs.on_press(
PadButton: :Down,

[
gb.sprites.move_composite_down_limit(player, 1, 150),
gb.sprites
.enable_composite_animation(player, anim_walk_front),
]
.concat(),

);
gb.add_inputs(inputs);
println!("{}", gb.build());

- Refactor the code.

. Try to write new examples to find new builtin functions

- Implement the sound manager.

RustBoy

An assembler and linker to generate the

RUst parser

rust_boy

RustBoy

An assembler and linker to generate the

AN

O https://github.com/ffex

m https://ww.linkedin.com/in/federico-bassini/

@ https://mastodon.social/affex

@] https://ww .1instagram.com/ffex_tech/

https://github.com/ffex/rust-boy

