

Querying DNS for software updates

Mechiel Lukkien
mechiel@ueber.net

https://github.com/mjl-

mailto:mechiel@ueber.net
https://github.com/mjl-

Agenda

● Part 1:
– Updates through DNS, manually
– Automating DNS for Go with gopherwatch.org

● Part 2:
– Automating upgrades with ysco
– On-demand binaries with beta.gobuilds.org

Updates through DNS, manually

$ dig +short TXT _updates.xmox.nl

"v=UPDATES0;l=v0.0.15"

● Release involves updating DNS record

DNS is a good fit

● Low overhead
● DNS caching, redundant servers
● Can’t track exact installations/IP’s

Automate DNS records for Go ecosystem

● All Go software is in a transparency log (tlog)
called Go sumdb
– modules and semver versions and hashes of source

code
– Git tags like v0.1.2, also pseudo-versions for commits

● Gopherwatch.org was already monitoring the tlog
and building database, just needed a DNS server

$ dig +short TXT mox.mjl_2d._.github.com.v0.l.gopherwatch.org

"v=v0.0.15 t=6802a84d"

 .gopherwatch.org
 .l
 .v0
 .github.com
 ._
 .mjl_2d
 mox

Example for github.com/mjl-/mox

Example for Go toolchain

$ dig +short TXT toolchain.v0.l.gopherwatch.org

"v=go1.25.6 k=cur t=69693421; v=go1.24.12 k=prev
t=69693421; v=go1.26rc2 k=next t=69693421"

Gopherwatch DNS server

● Built with github.com/miekg/dns
● <1000 lines of extra Go code
● DNSSEC with online signing and compact

denial of existence

How the Go sumdb gets filled

● Go toolchains request “latest” source code
through Go module proxy
– “go install github.com/mjl-/mox@latest”
– Use external library and “go get”
– “Latest” is resolved and new entries added to tlog

mailto:github.com/mjl-/mox@latest

To do

● Add second DNS server to l.gopherwatch.org
for redundancy

● Test/fuzz the DNS request handling. Tips for
test suites?

● Responses with tlog proofs, and verifiable
indexes.

Part 2

a) Automating upgrades with ysco

b) On-demand binaries with beta.gobuilds.org

Automating upgrades with ysco

● “./mygosvc” “ysco run ./mygosvc”→
● DNS query for updates every 24h

– Also query for new Go toolchains (static linking)
● Upgrade (download, terminate & restart):

– One-click, through web interface
– Automatic: delayed, policy (patch/minor), schedule

● No modifications to applications needed!

beta.gobuilds.org
● Service that compiles Go source on-demand

– Source code(*) is verified through Go sumdb (tlog)
– Automatically downloads new (verified) Go toolchains

● Cross-compiled for any OS/arch
● Reproducible builds (verified against 2nd server)
● Adds hashes of binaries to its own tlog
● Go toolchain only runs its own code to build, none of

the project being compiled

https://beta.gobuilds.org

https://beta.gobuilds.org/

Summary

One-click or fully automated upgrades from Go
source, without changes to applications

● Find updates for all Go software over DNS
● Use ysco to easily upgrade any Go service
● Using beta.gobuilds.org to compile on-demand

More

https://github.com/mjl-/gopherwatch

https://github.com/mjl-/ysco

https://github.com/mjl-/gobuild

https://www.ueber.net/who/mjl/blog/p/ysco-ma
naged-automated-updates-for-go-services/

https://github.com/mjl-/gopherwatch
https://github.com/mjl-/ysco
https://github.com/mjl-/gobuild
https://www.ueber.net/who/mjl/blog/p/ysco-managed-automated-updates-for-go-services/
https://www.ueber.net/who/mjl/blog/p/ysco-managed-automated-updates-for-go-services/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

