a2 ¥ FOSDEM

InXpect: Lightweight XDP Profiling

Vladimiro Paschali Andrea Monterubbiano Francesco Fazzari
University of Rome - CINECA University of Rome -
Sapienza Sapienza

Michael Swift Salvatore Pontarelli

University of Wisconsin - University of Rome -
Madison Sapienza

oz g O a2 ¥ FOSDEM

InXpect: Lightweight XDP Profiling

Vladimiro Paschali Andrea Monterubbiano Francesco Fazzari
University of Rome - CINECA University of Rome -
Sapienza Sapienza

Michael Swift Salvatore Pontarelli

University of Wisconsin - University of Rome -
Madison Sapienza

TOMBARBETTE

FULLY-FUNDED 2 YEARS POST-DOC POSITION
ON PROGRAMMABLE NETWORKS TO ENABLE
DIRECT DEVICES-TO-DEVICES COMMUNICATION

https://perso.uclouvain.be/tom.barbette/

a2 ¥ FOSDEM

InXpect: Lightweight XDP Profiling

Vladimiro Paschali Andrea Monterubbiano Francesco Fazzari
University of Rome - CINECA University of Rome -
Sapienza Sapienza

Michael Swift Salvatore Pontarelli

University of Wisconsin - University of Rome -
Madison Sapienza

) SN TR

XDP Performance Monitoring

a2 ¥ FOSDEM

Linux perf and bpftool are among the most widely used profilers for analysing eBPF and XDP
applications, but they introduce excessive overhead that degrades performance.

15 %

Profilers can reduce throughput by up to 4x
10 |

Mpps

As a result, profiling fast network functions _
becomes more challenging. HH

i

|
baseline bpftool [] perf
P p

Drop

CMS

APIENZA & %7 ¥ FOSDEM

QUE UNIVERSITA DI ROMA

Profiling XDP Applications

Profilers rely on specialized hardware registers (Performance Monitoring Counters, PMCs)
to track Hardware events such as instructions, cycles, cache hits/misses, and branch misses.

For eBPF applications, perf/bpftool attach two
programs fentry() and fexit() around the
target application to read PMC values and

S5 my func

. . 1 my func
save the monitored metric value. = -
1 hop o add w0, w1,wo
E bl trampoline | st
i ddr x1, [sp, &
1 add wi, wi,w0

:ret

Although simple, these scheme
introduces a significant overhead.

Alexis Lothoré. 2025. Bouncing on trampolines to run eBPF programs

8.

UNIVERSITA DI ROMA

£ SAPIENZA @

Profiling Overhead

In eBPF profiling, perf introduces over 600 additional
instructions for each fentry()/fexit() function.

This overhead is caused by both invoking the
fentry()/fexit() and the

bpf_perf_event _read_value() function used to
access PMCs.

As a result, both throughput and profiling accuracy are
disrupted.

For example, perf reports that a simple XDP_DROP
application executes 627 instructions, when it only
executes 2.

#instructions

1,000

500

&

{¥ FOSDEM

Instructions Breakdown

bpf_perf

read_value()

xdp_drop

bpf_perf

read_value()

1: (95

) 20 =1
) exit

XDP DROP xlated output

SAPIENZA e 9% ¥ FOSDEM

InXpect
To address these issues, we developed - P
InXpect, a lightweight XDP profiler. Array Map
Section 1
+ User-space component — Section 2
configures which CPU events to record xnxpectl .
User space settings .
« Tracingmacros Kernel space 4
delimit profiling sections read
EXECUTE CODE

* Kernel module
reads PMC values efficiently

END TRACE

write

XDP program

A SAPIENZA @

UNIVERSITA DI ROMA

a2 ¥ FOSDEM

InXpect Macros

Programmers delimit profiling sections with two ?EC(H Xdpj)
macros: START TRACE and END TRACE. int parsing(struct xdp md *ctx)
- - {
« START TRACE START TRACE(<SectionName >):
reads PMC values, stores them. Also manages [...]

region activation and sampling rate.

END TRACE(<SectionName >);
« END_TRACE

_ return XDP DROP;
reads PMC again, computes the difference, and }

stores the result in an eBPF map.

INXPECT instrumentation sample code

B swn) & 22 % FOSDEM

InXpect Kernel Module

4 '

-

eBPF ISA does not allow the use of native CPU
instructions such as rdpmc, which are needed to read [START TRACE
PMC values.

read

EXECUTE CODE

a END TRACE
’

XDP program

To overcome this limitation, we developed a Linux
kernel Module that exposes an eBPF kfunc to invoke
rdpmc.

) SAPIENZA & sle £ FOSDEM

& UNIVERSITA DI ROMA

Reducing perf Overhead

Optimizations in InXpect:

 Macros:
Using kfuncs inside eBPF removes the

fentry and fexit, saving ~200
instructions per call

1,000 |

500 -

#instructions

« Direct PMC access:
Using the native rdpmc x86 instruction,
instead of indirect access like perf, 0
saving ~280 instructions per read xdp_drop xdp_drop
perf INXPECT

fentry()

10

O v & 4 £ FOSDEM

XDP Applications used for evaluation

These are the applications Program Description Action

used to evaluate the profilers. Drop Drops each packet. XDP_DROP

. o i CMS Count Min Sketch 4 by 213 XDP_DROP
or each one, we report the :

corresponding action NAT Network Ac'ldress Tr.anslatlon. XDP_TX

performed by the Linux Router IP Look up in a routing table. =~ XDP_TX

kernel on every packet. Tunnel IP header encapsulation. XDP TX

11

UNIVERSITA DI ROMA

A SAPIENZA

Instruction Count Inaccuracy

* Profilers add their own instructions to
the measured count

* Extra instructions come from code
executed before the second PMC
read

* More complex profilers — more noise
in the results

Case study: Drop
Expected instruction count: ~2
perf: ~600 instructions
InXpect: ~40 instructions

#instructions

2,000
1,500
1,000

500

s

a2 ¥ FOSDEM

bpftool

] perf E] inXpect

e

g

Router

Tunnel

12

@ snirn & 22 £ FOSDEM

Throughput

InXpect is faster than perf and
bpftool but still halves the
performance of most applications when 15

\
77 baseline bpftool

profiling every packet. - O] perf Einxpect
The worst performance degradation & 10 2
occurs in the Drop application, since the = 7
relative weight of the profiler is 5 7 g
proportionally high. HH : H - H
LR ZHE R e
Drop CMS NAT Router Tunnel

We implemented a sampling
mechanism that significantly improves
performance.

13

SAPIENZA & o2 £X FOSDEM

Sampling

NAT Router Tunnel

+ Sampling reduces
profiling overhead

ot werefere v e e ‘
B oo S ’f)ﬁo%,{‘.:\ o \‘o 03\, h"‘ o %b (\, ,th Do D S qﬁlb%\’x;@y S RCEVRN ,fab%\q;@“ \b JE (ou o f,Jb 0 qy
* \Works best when Sampling interval Sampling interval Sampling interval Sampling interval Sampling interval
triggering sam ples —a— INXpECT Sampling - - - - INXPECT No Sampling —s— perf Sampling - perf No Sampling —— Baseline
IS Ilghtwelght Drop CMS NAT Router Tunnel
=] 4 T e T T T 18]] L5]
=< 04} T ’ '
« Excessive sampling £ .| 39 1.2 17 L -
. 5 | y S 4 3
lowers profilin 8 LI AL 33 I TNt 1
owers pro g Y 3 os 16| A
accuracy @ 1 | l
= 02 o e e s s 0-6 L] 15 | 051 |
) f,;], &> ,{b 20 q, DO PP {)toﬁ\n@y \b 4;» S 'L@’u L) q;\, > ,fp %,\@y L) f,;\, & ,{yb cj\ b
Sampling interval Sampling interval Sampling interval Sampling interval Sampling interval
—4a— Sampling —— No Sampling

14

Recap

We identified the main sources of overhead in standard XDP profilers
o fentry()

o fexit()

o bpf_perf_read_value()

Then, we developed InXpect, a lightweight profiling framework for XDP
applications

o Removed main sources of profiler overhead

o Used kfunc to directly and efficienly access PMCs

o Implemented a sampling functionality to further reduce overhead

InXpect vs. standard profilers on XDP applications
o 71% faster than perf

o 122% faster than perf (with sampling)

o 73% less instruction noise

& 42 £ FOSDEM

15

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15

