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Linux perf and bpftool are among the most widely used profilers for analysing eBPF and XDP
applications, but they introduce excessive overhead that degrades performance.
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Profilers can reduce throughput by up to 4x
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As a result, profiling fast network functions _
becomes more challenging. HH
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Profiling XDP Applications

Profilers rely on specialized hardware registers (Performance Monitoring Counters, PMCs)
to track Hardware events such as instructions, cycles, cache hits/misses, and branch misses.

For eBPF applications, perf/bpftool attach two
programs fentry() and fexit() around the
target application to read PMC values and

S5 my func

. . 1 my func
save the monitored metric value. = -
1 hop o add w0, w1,wo
E bl trampoline | st
i ddr x1, [sp, &
1 add wi, wi,w0

:ret

Although simple, these scheme
introduces a significant overhead.

Alexis Lothoré. 2025. Bouncing on trampolines to run eBPF programs

8.
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Profiling Overhead

In eBPF profiling, perf introduces over 600 additional
instructions for each fentry()/fexit() function.

This overhead is caused by both invoking the
fentry()/fexit() and the

bpf_perf_event _read_value() function used to
access PMCs.

As a result, both throughput and profiling accuracy are
disrupted.

For example, perf reports that a simple XDP_DROP
application executes 627 instructions, when it only
executes 2.

#instructions
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Instructions Breakdown

bpf_perf

read_value()

xdp_drop

bpf_perf

read_value()

1: (95
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) exit

XDP DROP xlated output




SAPIENZA e 9% ¥ FOSDEM

InXpect
To address these issues, we developed - P
InXpect, a lightweight XDP profiler. Array Map
Section 1
+ User-space component — Section 2
configures which CPU events to record xnxpectl .
User space settings .
« Tracingmacros Kernel space 4
delimit profiling sections read
EXECUTE CODE

* Kernel module
reads PMC values efficiently

END TRACE

write

XDP program



A SAPIENZA @

UNIVERSITA DI ROMA

a2 ¥ FOSDEM

InXpect Macros

Programmers delimit profiling sections with two ?EC( H Xdpj )
macros: START TRACE and END TRACE. int parsing(struct xdp md *ctx)
- - {
« START TRACE START TRACE(<SectionName >):
reads PMC values, stores them. Also manages [...]

region activation and sampling rate.

END TRACE(<SectionName >);
« END_TRACE

_ return XDP DROP;
reads PMC again, computes the difference, and }

stores the result in an eBPF map.

INXPECT instrumentation sample code
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InXpect Kernel Module

4 '

-

eBPF ISA does not allow the use of native CPU
instructions such as rdpmc, which are needed to read [ START TRACE
PMC values.

read

EXECUTE CODE

a END TRACE
’

XDP program

To overcome this limitation, we developed a Linux
kernel Module that exposes an eBPF kfunc to invoke
rdpmc.
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Reducing perf Overhead

Optimizations in InXpect:

 Macros:
Using kfuncs inside eBPF removes the

fentry and fexit, saving ~200
instructions per call

1,000 |

500 -

#instructions

« Direct PMC access:
Using the native rdpmc x86 instruction,
instead of indirect access like perf, 0
saving ~280 instructions per read xdp_drop xdp_drop
perf INXPECT

fentry()

10
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XDP Applications used for evaluation

These are the applications Program Description Action

used to evaluate the profilers.  Drop Drops each packet. XDP_DROP

. o i CMS Count Min Sketch 4 by 213 XDP_DROP
or each one, we report the :

corresponding action NAT Network Ac'ldress Tr.anslatlon. XDP_TX

performed by the Linux Router IP Look up in a routing table. =~ XDP_TX

kernel on every packet. Tunnel IP header encapsulation. XDP TX

11
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Instruction Count Inaccuracy

* Profilers add their own instructions to
the measured count

* Extra instructions come from code
executed before the second PMC
read

* More complex profilers — more noise
in the results

Case study: Drop
Expected instruction count: ~2
perf: ~600 instructions
InXpect: ~40 instructions

#instructions
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bpftool
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Throughput

InXpect is faster than perf and
bpftool but still halves the
performance of most applications when 15

\
77 baseline bpftool

profiling every packet. - O] perf  Einxpect
The worst performance degradation & 10 2
occurs in the Drop application, since the = 7
relative weight of the profiler is 5 7 g
proportionally high. HH : H - H
LR ZHE R e
Drop CMS NAT Router Tunnel

We implemented a sampling
mechanism that significantly improves
performance.

13
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Sampling

NAT Router Tunnel

+ Sampling reduces
profiling overhead
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Recap

We identified the main sources of overhead in standard XDP profilers
o fentry()

o fexit()

o bpf_perf_read_value()

Then, we developed InXpect, a lightweight profiling framework for XDP
applications

o Removed main sources of profiler overhead

o Used kfunc to directly and efficienly access PMCs

o Implemented a sampling functionality to further reduce overhead

InXpect vs. standard profilers on XDP applications
o 71% faster than perf

o 122% faster than perf (with sampling)

o 73% less instruction noise
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