
1

InXpect: Lightweight XDP Profiling

Andrea Monterubbiano

CINECA

Vladimiro Paschali

University of Rome -

Sapienza

Michael Swift

University of Wisconsin -

Madison 

Salvatore Pontarelli 

University of Rome -

Sapienza

Francesco Fazzari

University of Rome -

Sapienza



2

InXpect: Lightweight XDP Profiling

Andrea Monterubbiano

CINECA

Vladimiro Paschali

University of Rome -

Sapienza

Michael Swift

University of Wisconsin -

Madison 

Salvatore Pontarelli 

University of Rome -

Sapienza

Francesco Fazzari

University of Rome -

Sapienza

TOM BARBETTE
FULLY-FUNDED 2 YEARS POST-DOC POSITION 
ON PROGRAMMABLE NETWORKS TO ENABLE
DIRECT DEVICES-TO-DEVICES COMMUNICATION

https://perso.uclouvain.be/tom.barbette/


3

InXpect: Lightweight XDP Profiling

Andrea Monterubbiano

CINECA

Vladimiro Paschali

University of Rome -

Sapienza

Michael Swift

University of Wisconsin -

Madison 

Salvatore Pontarelli 

University of Rome -

Sapienza

Francesco Fazzari

University of Rome -

Sapienza



4

XDP Performance Monitoring

Linux perf and bpftool are among the most widely used profilers for analysing eBPF and XDP 

applications, but they introduce excessive overhead that degrades performance.

Profilers can reduce throughput by up to 4×

As a result, profiling fast network functions 

becomes more challenging.



5

Profiling XDP Applications 

Profilers rely on specialized hardware registers (Performance Monitoring Counters, PMCs) 

to track Hardware events such as instructions, cycles, cache hits/misses, and branch misses. 

For eBPF applications, perf/bpftool attach two 

programs fentry() and fexit() around the 

target application to read PMC values and 

save the monitored metric value. 

Although simple, these scheme 

introduces a significant overhead. 

Alexis Lothoré. 2025. Bouncing on trampolines to run eBPF programs



6

Profiling Overhead

In eBPF profiling, perf introduces over 600 additional 

instructions for each fentry()/fexit() function.

This overhead is caused by both invoking the 
fentry()/fexit() and the 

bpf_perf_event_read_value() function used to 

access PMCs.

As a result, both throughput and profiling accuracy are 

disrupted.

For example, perf reports that a simple XDP_DROP 

application executes 627 instructions, when it only 

executes 2.



7

InXpect

To address these issues, we developed 

InXpect, a lightweight XDP profiler.

• User-space component

configures which CPU events to record

• Tracing macros

delimit profiling sections

• Kernel module

reads PMC values efficiently



8

InXpect Macros

Programmers delimit profiling sections with two 

macros: START_TRACE and END_TRACE.

• START_TRACE

reads PMC values, stores them. Also manages 

region activation and sampling rate.

• END_TRACE

reads PMC again, computes the difference, and 

stores the result in an eBPF map.



9

InXpect Kernel Module

eBPF ISA does not allow the use of native CPU 

instructions such as rdpmc, which are needed to read 

PMC values. 

To overcome this limitation, we developed a Linux 

kernel Module that exposes an eBPF kfunc to invoke 

rdpmc.



10

Reducing perf Overhead

Optimizations in InXpect:

• Macros:
Using kfuncs inside eBPF removes the 

fentry and fexit, saving ~200 

instructions per call

• Direct PMC access:

Using the native rdpmc x86 instruction, 
instead of indirect access like perf, 

saving ~280 instructions per read 



11

XDP Applications used for evaluation

These are the applications

used to evaluate the profilers.

For each one, we report the 

corresponding action

performed by the Linux 

kernel on every packet.



12

Instruction Count Inaccuracy

• Profilers add their own instructions to 

the measured count

• Extra instructions come from code 

executed before the second PMC 

read

• More complex profilers → more noise

in the results

Case study: Drop 

Expected instruction count: ~2
perf: ~600 instructions

InXpect: ~40 instructions



13

Throughput

InXpect is faster than perf and 

bpftool but still halves the 

performance of most applications when 

profiling every packet.

The worst performance degradation 
occurs in the Drop application, since the 

relative weight of the profiler is 

proportionally high.

We implemented a sampling 

mechanism that significantly improves 

performance.



14

Sampling

• Sampling reduces

profiling overhead

• Works best when 

triggering samples 

is lightweight

• Excessive sampling 

lowers profiling 

accuracy



15

Recap

We identified the main sources of overhead in standard XDP profilers
o fentry()
o fexit()
o bpf_perf_read_value()

Then, we developed InXpect, a lightweight profiling framework for XDP 

applications

o Removed main sources of profiler overhead

o Used kfunc to directly and efficienly access PMCs

o Implemented a sampling functionality to further reduce overhead

InXpect vs. standard profilers on XDP applications
o 71% faster than perf
o 122% faster than perf (with sampling)

o 73% less instruction noise


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15

