
Scaling Secure Network Functions
High-Performance IPsec with FD.io VPP for VNFs and CNFs

Benôıt Ganne – bganne@cisco.com
Cisco

FOSDEM 2026 — Saturday, January 31 — Network Track

mailto:bganne@cisco.com

About Me

Technical Leader @ Cisco CloudSec

VPP Committer @ FD.io

20 years pushing packets
(and still finding new ways to drop them)

What we run in prod:

50K
tunnels

7 PB
per month

10T
packets/month

Why Listen to Me?

Battle scars from scaling IPsec to 50K tunnels – here’s what actually works

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 2 / 16

What We’ll Cover

1. Why IPsec at Scale is Hard

2. FD.io VPP in 60 Seconds

3. What’s New in VPP IPsec

4. Policy, P2P, or P2MP?

5. 10,000 Tunnels: The Showdown

6. Breaking the Single-Core Barrier

7. Don’t Blow Your Memory Budget

8. Automation Friendly

9. TL;DR

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 3 / 16

Why IPsec at Scale is Hard

VNF/CNF Requirements:

SD-WAN: 1000+ tunnels per node

5G UPF: N3/N9 interface security

Fat pipes: 10G+ per tunnel

High throughput: 40G, 100G+

Multi-tenancy: VRF per customer

Traditional Challenges:

Kernel IPsec: limited performance

Kernel modules: incompatible with
containers

Per-tunnel interface overhead

Memory explosion with VRFs

No APIs: manual config doesn’t scale

Goal

Wire-speed IPsec in software, scaling to thousands of tunnels

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 4 / 16

FD.io VPP in 60 Seconds

Vector Packet Processing Platform

Open-source (Linux Foundation)

User-space: easy to deploy in VNF/CNF

API-driven: binary API, REST, gRPC

Multi-arch: x86, ARM (Graviton, Ampere)

Why VPP for IPsec?

Performance!

Scale: 10K+ tunnels, async crypto

Customization: plugin architecture

Integration: API-driven, cloud-native ready

user space

Agent

VPP

crypto ipsec

DPDK AF XDP native

Kernel

NIC

kernel bypass

See other FD.io talks at FOSDEM for

deep dives!

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 5 / 16

What’s New in VPP IPsec (2024–2025)

Performance Optimizations:

Unified crypto+HMAC ops

Single operation per packet

Template-based ESP processing

Less overhead

SA runtime data refactoring

Better cache efficiency

New Features:

Full IPv6 NAT-T support

UDP encap, RFC 6935/6936

IPv6 bypass/discard policies

Parity with IPv4

Async handoff queue tuning

Tune for your workload

Active Development

22 files changed for unified crypto alone – VPP IPsec is actively maintained!

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 6 / 16

Policy, P2P, or P2MP?

Policy-Based Route P2P Route P2MP
SA selection 5-tuple match interface next-hop
Interfaces none 1 per tunnel 1 shared
Routing integration no yes yes
Dynamic routing no yes yes
Scale consideration flow-cache! interface count hash lookup

When to use:

Policy-based: legacy interop, no routing needed, enable flow-cache!

Route P2P: simple ops, moderate tunnel count, dynamic routing

Route P2MP: hub-and-spoke, 100+ spokes, reduced overhead

See backup slides for CLI examples

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 7 / 16

10,000 Tunnels: The Showdown

Key Findings:

Policy without cache: unusable

Flow-cache: 40x faster (yes, really)

Both modes scale linearly with cores

Performance Comparison (Gbps):

Cores Policy +cache P2P
1 0.5 20 24
2 1.3 37 43
4 2.0 49* 78

Test: 10K tunnels, AES-256-GCM, Intel ICX, PDR <0.5%.

Source: FD.io CSIT – https://csit.fd.io/report/

* 25ge line rate; P2P on 100ge.

Takeaway

Always enable flow-cache for policy-based IPsec! Route-based P2P slightly faster
but requires more interfaces.

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 8 / 16

https://csit.fd.io/report/

Breaking the Single-Core Barrier

Two Problems:

1. Fat pipes: single tunnel > 1 core
capacity

2. Load imbalance: multiple fat pipes
on one core starve other tunnels

Solution: Async Crypto

Decouples packet processing from
crypto

Distributes crypto work across cores

Prevents noisy neighbor effect

Enables hardware offload (QAT, etc.)

Performance (1 tunnel, Gbps):

Cores Sync Async
1 28* –
2 – 56
3 – 64
4 – 70

Test: 1 tunnel, AES-256-GCM, Intel EMR, PDR <0.5%.

Source: FD.io CSIT – https://csit.fd.io/report/

* 4 tunnels for sync.

70 Gbps on a single tunnel!

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 9 / 16

https://csit.fd.io/report/

Don’t Blow Your Memory Budget

The Problem: Each VRF needs its own FIB → memory adds up fast

VPP uses an mtrie for IPv4 FIB lookup. 16-8-8 = 3 levels (65K + 256 + 256 entries).

8-8-8-8 = 4 levels (256 entries each). Smaller root → less memory per VRF.

1000 VRFs Default (16-8-8) Scale (8-8-8-8)
Memory 330 MB 8 MB

Lookup steps 3 4

41x less memory!

How: Compile with -DVPP IP FIB MTRIE 16=OFF

Trade-off

One extra lookup step for 41x memory savings – worth it at scale

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 10 / 16

Automation Friendly

API Options:

Binary API – Piloting VPP

GoVPP – Go bindings

go.fd.io/govpp

GoBGP for routing – see later talk!

Python – scripting & test

HTTP/REST – JSON over HTTP

etcd – K8s-native config store

K8s / SD-WAN / Orchestrator

etcdBGP

Agent Prometheus

VPP

REST

VPP binapi

packets

Cloud-Native Ready

No kernel modules – runs in containers. API-driven – fits GitOps workflows.

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 11 / 16

go.fd.io/govpp

TL;DR

1. Choose the right IPsec mode
Policy+flow-cache: no interface overhead, good for many tunnels
Route-based P2P/P2MP: dynamic routing, scale

2. Use async crypto scheduler
Prevents noisy neighbor, enables HW offload
70 Gbps single tunnel (2.5x sync)

3. Plan for memory at scale
8-8-8-8 mtrie: 41x reduction for 1000+ VRFs

4. Integrate via API
GoVPP for K8s/orchestration, Python for scripting
No kernel modules – container-friendly

Resources:

FD.io: https://fd.io

CSIT: https://csit.fd.io — GoVPP: https://go.fd.io/govpp

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 12 / 16

https://fd.io
https://csit.fd.io
https://go.fd.io/govpp

Questions?

Thank you!

Benôıt Ganne – bganne@cisco.com

https://fd.io

mailto:bganne@cisco.com
https://fd.io

Backup: Policy-Based IPsec CLI

Create SAs

ipsec sa add 10 spi 1000 crypto-alg aes-gcm-256 crypto-key 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef tunnel src 1.1.1.1 dst 2.2.2.2

ipsec sa add 20 spi 2000 crypto-alg aes-gcm-256 crypto-key 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef inbound tunnel src 2.2.2.2 dst 1.1.1.1

Create SPD and bind to interface

ipsec spd add 1

set interface ipsec spd local0 1

Add policies

ipsec policy add spd 1 outbound priority 100 action protect local-ip-range 10.0.0.0-10.0.0.255 remote-ip-range 10.1.0.0-10.1.0.255 sa 10

ipsec policy add spd 1 inbound priority 100 action protect local-ip-range 10.0.0.0-10.0.0.255 remote-ip-range 10.1.0.0-10.1.0.255 sa 20

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 14 / 16

Backup: Route-Based IPsec CLI

Create SAs

ipsec sa add 10 spi 1000 crypto-alg aes-gcm-256 crypto-key 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef tunnel src 1.1.1.1 dst 2.2.2.2

ipsec sa add 20 spi 2000 crypto-alg aes-gcm-256 crypto-key 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef tunnel src 2.2.2.2 dst 1.1.1.1 inbound

Create IPsec interface

ipsec itf create instance 0

Protect interface with SAs

ipsec tunnel protect ipsec0 sa-in 20 sa-out 10

Route traffic via interface

ip route add 10.1.0.0/24 via ipsec0

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 15 / 16

Backup: P2MP IPsec CLI

Create SAs for multiple peers

ipsec sa add 10 spi 1000 crypto-alg aes-gcm-256 crypto-key 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcde0 tunnel src 1.1.1.1 dst 2.2.2.2

ipsec sa add 11 spi 2000 crypto-alg aes-gcm-256 crypto-key 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcde0 tunnel src 2.2.2.2 dst 1.1.1.1 inbound

ipsec sa add 20 spi 1001 crypto-alg aes-gcm-256 crypto-key 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcde1 tunnel src 1.1.1.1 dst 3.3.3.3

ipsec sa add 21 spi 2001 crypto-alg aes-gcm-256 crypto-key 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcde1 tunnel src 3.3.3.3 dst 1.1.1.1 inbound

Create P2MP IPsec interface

ipsec itf create instance 0 p2mp

Protect with multiple peers

ipsec tunnel protect ipsec0 sa-in 11 sa-out 10 2.2.2.2

ipsec tunnel protect ipsec0 sa-in 21 sa-out 20 3.3.3.3

Route to peers via interface

ip route add 10.1.0.0/24 via 2.2.2.2 ipsec0

ip route add 10.2.0.0/24 via 3.3.3.3 ipsec0

Benôıt Ganne – bganne@cisco.com IPsec with FD.io VPP 16 / 16

	Introduction
	VPP Refresher
	IPsec Modes in VPP
	Performance
	FIB Scaling
	Orchestration
	Conclusion
	Appendix

