
(clang-)Tidying up includes
in systemd

Why do (unused) includes matter?

- Before:
- Compilation (1572 times):

- Parsing (frontend): 322.4 s
- Codegen & opts (backend): 51.1 s

- After:
- Compilation (1722 times):

- Parsing (frontend): 240.1 s
- Codegen & opts (backend): 49.6 s

- Expensive headers:
- 27991 ms: ../src/basic/alloc-util.h (included 1424 times, avg 19 ms)

- Various CI jobs => 2x speedup
- > 3000 includes removed

1. Remove unused includes
2. Minimize transient includes (x.c => y.h => z.h)

- Forward declarations
- Move macro implementation details to source file
- Minimize inline functions

How to reduce the number of includes?

Preparing by removing all circular includes

- Various tools I tried seemed to really dislike circular includes
- Not easily automated, best done by hand
- misc-header-include-cycle clang-tidy check is amazing!
- clangd also seemed to stop crashing after I removed all circular includes

Integrating clang-tidy in the build system

- Attempt #1: meson’s builtin clang-tidy target
- Can’t add dependencies on generated sources
- Runs on all source files regardless of whether they’re built or not
- Doesn’t allow passing extra arguments

- Attempt #2: LLVM’s run-clang-tidy script
- Does not run on header files
- Independent scheduler (meson already has a working scheduler)

- Attempt #3: meson tests
- Each clang-tidy invocation is a separate meson test
- All clang-tidy tests are grouped together in the “clang-tidy” test suite

Attempt #1: IWYU (include-what-you-use)

- Independent tool using the clang C++ API
- clang C++ API does not offer any backwards compat

- => Tied to a single major LLVM version :/
- Various bugs and missing features, fixed a few:

- Add support for the cleanup attribute
- Make sure C arrays result in includes and not a forward declaration
- …

https://github.com/include-what-you-use/include-what-you-use/pull/1712
https://github.com/include-what-you-use/include-what-you-use/pull/1748

Attempt #2: clang-include-cleaner

- Less opinionated than IWYU
- Can only report unused includes, without complaining about missing includes

- Ships with LLVM
- Also various bugs and missing features:

- include-cleaner: Report function decls from __cleanup__ as used
- [clang-include-cleaner] Make cleanup attr report expr location #140233
- [clang-tidy] Add UnusedIncludes/MissingIncludes options to misc-include-cleaner

- Integrated into clang-tidy! (misc-include-cleaner)

https://github.com/llvm/llvm-project/pull/138669
https://github.com/llvm/llvm-project/pull/140233
https://github.com/llvm/llvm-project/pull/140600

Managing forward declarations

- Repeating forward declarations in every header file doesn’t scale
- Solution? Forward declaration headers!

- basic-forward.h
- sd-forward.h
- shared-forward.h
- core-forward.h
- …

- basic-forward.h also transitively includes most commonly used headers
- stdint.h
- errno.h
- …

Dealing with conditional compilation

- Almost all library dependencies in systemd are optional
- Lots of conditional compilation based on which libraries are available

- => Unused includes reported when libraries are disabled!
- Solution: Only guarantee clean clang-tidy runs in a restricted environment

where all dependencies are enabled

Problems with system headers

- Can’t add IWYU pragmas to system headers
- <getopt.h> is always marked unused in favor of internal implementation headers included by

<getopt.h>
- clang-include-cleaner doesn’t allow specifying pragmas in a configuration file

Other useful clang-tidy checks

- bugprone-argument-comment
- readability-inconsistent-declaration-parameter-name
- bugprone-sizeof-expression

The final boss: clang-format

- systemd has its own formatting style
- Distinct from all the others shipped in clang-format

- systemd maintainers refuse to change style to accommodate tooling
- Slowly trying to add missing features to clang-format

- [clang-format] Add IgnoreExtension to SortIncludes
- [clang-format] Allow custom pointer/ref alignment in return types

- Also quite a few bugs in clang-format that still need to be fixed:
- Designated initializer formatting
- Table formatting

https://github.com/llvm/llvm-project/pull/137840
https://github.com/llvm/llvm-project/pull/169160

Questions?

