tract
an efficient rust neural network

iInference engine
&
Shipping neural networks with

torch-to-nnef

https://tinyurl.com/tract-rs

FOSDEM?26

Overview

e Mathieu and Julien, ML software engineers for Sonos Voice Control

e Introducing two open-source libraries

o tract, a Rust generic neural network inference library
o torch-to-nnef, a companion project to export PyTorch model in tract’s preferred format

&

tract

an efficient rust neural network inference engine

15min

Scratching the surface

e Neural Network inference library

e ‘“tract all the way down”: full stack, from
model parsing to optimized kernels

e Have been around for 9 years or so

e In Rust, integration friendly, Apache2/MIT

fn main() -> Result<()
nnef = tract_rs: :nnef()7?;
model = nnef.load("mobilenet_v2_1.0.onnx.nnef.tgz")?.into_runnable()?;

resized =

image: . imageops: resize(&image, 224, 224, ::image::imageops: FilterType: :Triangle);
input = tract_ndarray: :Array4::from_shape_fn((1, 3, 224, 224), |(_, ¢, ¥y, X)|

let mean = [0.485, 0.456, 0.406][c];

let std = [0.229, 0.224, 0.225][c];

(resized|[(x as _, y as _)l[c] as f32 / 255.0 - mean) / std

§ Y . & Py
y the moade O the

let result: Vec<Value> = model.run([input])?;

let best =
&result[0].as_slice::<f32>()7?.iter().zip(2..).max_by(|a, b| a.0.partial_cmp(b.0).unwrap())

println! ("result: {best:?7}");
Ok(())

tract mobilenet_v2_1.0.nnef.tgz

data
1,3,224,224,F32
3 nv conv
x Data format: NCHW
* Kernel shape:[3, 3] (strides:Some([2, 2]), padding:Explicit([1, 1], [1, 1]), dilations:Some([1, 1]))
* Kernel OIHW (groups:1)
1,32,112,112,F32
5 Max relu_relu_y_4
7 conv_1
* NIHW,O0I->0HW (F32)
32,112,112,F32
9 batch_normalization_1_batch_normalization_output_3
1n batch_normalization_1_batch_normalization_output_8
13 Mul batch_normalization_1_batch_normalization_output_16

D ms/i

ms/1i

ms/1i

ms/1i

ms/1i

D ms/1i

ms/i
ms/i
ms/1i
ms/1i
ms/1i
ms/1i
ms/1i
ms/1i
ms/1i
ms/1i
ms/1i

ms/1i

ms/i

mobilenet_v2_1.0.nnef.tgz -0 dump --cost --profile -R

FMA(F32)

FMA(F32)
FMA(F32)

FMA(F32)
FMA(F32)

FMA(F32)

FMA(F32)

6.8% FMA(F32)

10838016

12845056

3612672

401408
401408

6422528

19267584

2709504

1,1,0paque ®, DynPackedOpaqueFact { k: Val(27),

data
1,3,224,224,F32

i conv.pad

1,3,226,226,F32
ol conv.lazyIm2col

conv.matmatmul

1,1,32,12544,F32
conv.reshape_group

1,32,112,112,F32
3 relu_relu_y_4

conv_1.pack_a

1,112,0paque ®, DynPackedOpaqueFact { k: Val(32), m

16 OptMatMul relu_71_relu_y_0
32,112,112,F32
conv_2

mn:

mn:

Val(12544), packers:

batch_normalization_2_batch_normalization_output_3
batch_normalization_2_batch_normalization_output_8
batch_normalization_2_batch_normalization_output_16
batch_normalization_2_batch_normalization_output_21

] relu_2_relu_y_0
] conv_3.pack_a
112 Opaque ®. DynPackedOpaqueFact { k: Val(32), m

mn:

Val(112), packers:

35 OptMatMul batch_normalization_3_batch_normalization_output_21

16,112,112,F32
U ck conv_4.pack_a
112,0paque ®. DynPackedOpaqueFact { k: Val(16),
43 | at relu_3_relu_y_0
96,112,112,F32
] conv_5

mn:

Val(112), packers:

val(112), packers:

[Pa

[Pa

[Pack

[Pack

Easy to integrate

No cumbersome third party dependency
Easy to cross compile (Rust...) (te > q r m
WASM support (run your model in a browser)

Optimized for ARM32, ARM64, X64, WASM
SIMD, metal, cuda.

C API
e Python bindings: pip install tract

GPU support

let nnef tract_rs: :nnef()?

let model nnef.load("mobilenet_v2_1.0.onnx.nnef.tgz")?.into_runnable()?;

tract mobilenet_v2_1.0.nnef.tgz -0 bench

Bench ran 127 times, 39.493 ms/i.

let nnef tract_rs::nnef()?;
let model nnef.load("mobilenet_v2_1.0.onnx.nnef.tgz")7;
let model runtime_for_name("“cuda”“)?.prepare(model)?

tract mobilenet_v2_1.0.nnef.tgz --cuda bench

Bench ran 2259 times, 2.204 ms/i.

tract --11lm --opl Llama-3.1-8B-Instruct-f16f16.nnef.tgz

input_ids
1,S,164
model_model_embedTokens_inputsEmbeds_0O
1,5,2048,F16

model_model__0O_inputlLayernorm_hiddenStatesTo®
- 1,5,2048,F32
- 4 model_model__0O_inputlLayernorm_varianceMeanO_mean_reduce_output.rms_norm
S model_model__0O_inputlLayernorm_toQ
- 1,5,2048,F16
Fl 7 model_model__0_inputlLayernorm_hiddenStatesMulO_1
‘ - 1,5,2048,F16

29 ~ model_model__0_selfAttn_keyStatesAddO_1.apply_rope

30 . in_cache_key_0

-_— 1,8,5+P,64,F16

11

ONNX models support

e ONNX is first class citizen.

e tract strong tensor typing : for each tensor we want
o afixed rank
o all dimension known (symbolic expression allowed)

e ONNX protobuf format does not contain detailed tensor shapes
e Two-stage loading: load, add some shape hints, tract will infer the rest
e Still supporting symbolic shape

12

st_inference_model() -> anyhow: :Resultc<
ensure_models()7?:
let mut model onnx()?7.load("mobilenetv2-7.onnx")7;
model .set_input_fact(0, "1,3,224,224,F32")7;
let model = model.into_tract()?.into_runnable()?
let hopper hopper()
let result = model.run(|hopper
let view = result|0].view: : :<f32
let best = view
.as_slice
unwrap
dter()
.enumerate
max_by(la, b| a.1.partial_cmp(b.1).unwrap
unwrap();
assert_eq! (best.0, 652);
Ok

LLMs support and torch-to-nnef

e The LLM tsunami happened with specialized engines

e tract supports LLMs, but as a generic engine
o Models structures are not hard-coded in tract
o Instead, tract has an SDPA operator (and a couple other dedicated ones)
o tract needs to be given the graph description in the input format: NNEF (or ONNX)

e ONNX s a bit awkward with LLM (getting better lately)

e This lead us to open-source torch-to-nnef last summer.

14

i .__:..-
- || I.l . [=
; tinyurl.com/torch-to-nnef
Shipping neural networks with docs

torch-to-nnef

5min

What composes a neural network model asset ?

A neural network asset is the packaged output of training that is designed for efficient inference. It
typically contains two essential components:

”"': A list of tensors with names and values (the parameters learned during the training
’ process).

A computation graph stitching the tensors together: inputs, outputs, data
types, tensor shapes, and the sequence of operators.

16

What is NNEF ?

NNEF stands for Neural Network Exchange Format.

It addresses the same core problem as @ O NN X but focusing on
inference.

Specified by the K H R@N O S® (consortium of ~170 companies)

GROUP

Interested readers can dive into the specifications of this format here.

17

https://registry.khronos.org/NNEF/specs/1.0/nnef-1.0.5.html

Why NNEF is interesting ?

) Readable Graph Structure

The main . nnef file represents the model graph
in a simple, declarative, text-based format

%3 Composition

Neural-network are made of repetition of blocks, the
text format promotes reusability, avoids repetition,
and enables a clean functional structure.

<}® Extensible Tensors & Quantization Logic

e Quantization metadata can live in a separate
.quant file

e Flexible Tensor Storage
Each tensor is stored as a binary .dat blob.

NNEF syntax example

fragment gelu_fast_approx(x: > =S iy < i)
$:
L
y = 0.5 *x * (1.0 + (x * 0.79788456 * (1.0 + 1S ke i)) o) =
}
graph yrk(input_0) -> (output_0)
{
input_0 = tract_c ternal(shape = [1, 2], datum_type = 32208
lin_weight = >(label = t', shape = [2, 2]);
lin_bias = < >(label = , shape = [2]);
lin_bias_aligned_rank_expanded = squeeze(lin_bias, axes = [0]);

lin__x_1linear0 = (input_0, lin_weight, lin_bias_aligned_rank_expanded);
gelud = gelu_fast_approx(lin__x_linear0);

lin_bias_aligned_rank_expanded = squeeze(lin_bias, axes = [0]);
lin_2nd_call_x = (gelu®, 1lin_weight, lin_bias_aligned_rank_expanded);

output_0 = gelu_fast ox(1in_2nd_call_x);

=

18

What is torch-to-nnef ?
Export Python example

Torch to NNEF is a Python package that: from pathlib import Path

from torch_to_nnef import export_model_to_nnef, TractNNEF

export_model_to_nnef(

e was born in early 2022 out of the frustration of model=my_model,
ONNX quantization export state and our need
back then for an internal project

args=inputs_data_sample,

file_path_export=Path("vit_b_16.nnef.tgz"),

e Creates a strong bridge between PyTorch and inference_target=TractNNEF(
NNEF version="60.21.13",

e Allows a complete and flexible control to check_io=True,
export any model.)

input_names=["input"],
output_names=["output"],

.. debug_bundle_path=Path("./debug.tgz"),
pip install torch-to-nnef)

19

https://pypi.org/project/torch_to_nnef/

Why torch-to-nnef ?

Export advanced quantization/dequantization functions, data-types optimized on PyTorch
side seamlessly.

e Optionally control serialization of specific nn.Module

o Provide additional expressions on symbolic dimensions, helping engine to reason about
them (ie. Batch dimension being always >0).

o Export signal based networks easily (MFCC, MelFilterBanks, ...)

20

Thanks for listening

Interested to use or contribute ?

github.com/sonos/tract github.com/sonos/torch-to-nnef

Documentations and past articles:

Technical documentation tract

Technical documentation torch-to-nnef

Sonos tech blog related articles: [1], [2], [3], [4]
2019 blog post introducing tract

21

https://github.com/sonos/tract/tree/main/doc
https://sonos.github.io/torch-to-nnef/latest/
https://tech-blog.sonos.com/posts/optimising-a-neural-network-for-inference/
https://tech-blog.sonos.com/posts/the-anatomy-of-efficient-matrix-multipliers/
https://tech-blog.sonos.com/posts/assembly-still-matters-cortex-a53-vs-m1/
https://tech-blog.sonos.com/posts/torch-2-nnef-open-sourcing/
https://medium.com/snips-ai/snips-open-sources-tract-cdc50f437ef2

