
slides

https://tinyurl.com/tract-rstract
an efficient rust neural network

inference engine
&

Shipping neural networks with
torch-to-nnef

Overview

● Mathieu and Julien, ML software engineers for Sonos Voice Control
● Introducing two open-source libraries

○ tract, a Rust generic neural network inference library
○ torch-to-nnef, a companion project to export PyTorch model in tract’s preferred format

2

tract

15min

an efficient rust neural network inference engine

Scratching the surface

● Neural Network inference library
● “tract all the way down”: full stack, from

model parsing to optimized kernels
● Have been around for 9 years or so
● In Rust, integration friendly, Apache2/MIT

4

5

tract mobilenet_v2_1.0.nnef.tgz

6

tract mobilenet_v2_1.0.nnef.tgz -O dump --cost --profile -R

7

Easy to integrate

● No cumbersome third party dependency
● Easy to cross compile (Rust…)
● WASM support (run your model in a browser)
● Optimized for ARM32, ARM64, X64, WASM

SIMD, metal, cuda.
● C API
● Python bindings: pip install tract

8

GPU support

tract mobilenet_v2_1.0.nnef.tgz -O bench

tract mobilenet_v2_1.0.nnef.tgz --cuda bench

9

tract --llm --opl Llama-3.1-8B-Instruct-f16f16.nnef.tgz

10

11

ONNX models support

● ONNX is first class citizen.
● tract strong tensor typing : for each tensor we want

○ a fixed rank
○ all dimension known (symbolic expression allowed)

● ONNX protobuf format does not contain detailed tensor shapes
● Two-stage loading: load, add some shape hints, tract will infer the rest
● Still supporting symbolic shape

12

13

LLMs support and torch-to-nnef

● The LLM tsunami happened with specialized engines
● tract supports LLMs, but as a generic engine

○ Models structures are not hard-coded in tract
○ Instead, tract has an SDPA operator (and a couple other dedicated ones)
○ tract needs to be given the graph description in the input format: NNEF (or ONNX)

● ONNX is a bit awkward with LLM (getting better lately)

● This lead us to open-source torch-to-nnef last summer.

14

docs

torch-to-nnef

5min

A highly tract compatible exporter

Shipping neural networks with
tinyurl.com/torch-to-nnef

What composes a neural network model asset ?

A list of tensors with names and values (the parameters learned during the training
process).

A computation graph stitching the tensors together: inputs, outputs, data
types, tensor shapes, and the sequence of operators.

A neural network asset is the packaged output of training that is designed for efficient inference. It
typically contains two essential components:

16

What is NNEF ?

NNEF stands for Neural Network Exchange Format.

It addresses the same core problem as but focusing on
inference.

Specified by the (consortium of ~170 companies)

Interested readers can dive into the specifications of this format here. 17

https://registry.khronos.org/NNEF/specs/1.0/nnef-1.0.5.html

Why NNEF is interesting ?

Readable Graph Structure
The main .nnef file represents the model graph
in a simple, declarative, text-based format

 Composition

Neural-network are made of repetition of blocks, the
text format promotes reusability, avoids repetition,
and enables a clean functional structure.

Extensible Tensors & Quantization Logic

● Quantization metadata can live in a separate
.quant file

● Flexible Tensor Storage
 Each tensor is stored as a binary .dat blob.

NNEF syntax example

18

What is torch-to-nnef ?

from pathlib import Path
from torch_to_nnef import export_model_to_nnef, TractNNEF

export_model_to_nnef(
 # any nn.Module
 model=my_model,
 # tuple of model arguments
 args=inputs_data_sample,
 # filepath to dump NNEF archive
 file_path_export=Path("vit_b_16.nnef.tgz"),
 # inference engine to target
 inference_target=TractNNEF(
 # tract version (to ensure compatible operators)
 version="0.21.13",
 # and correctness of output compared to PyTorch

 # for the provided model and input is performed
 check_io=True,
),
 input_names=["input"],
 output_names=["output"],
 # create a debug bundle in case model export work
 # but NNEF fail in tract
 # (either due to load error or precision mismatch)
 debug_bundle_path=Path("./debug.tgz"),
)pip install torch-to-nnef

Torch to NNEF is a Python package that:

● was born in early 2022 out of the frustration of
ONNX quantization export state and our need
back then for an internal project

● Creates a strong bridge between PyTorch and
NNEF

● Allows a complete and flexible control to
export any model.

Export Python example

19

https://pypi.org/project/torch_to_nnef/

Why torch-to-nnef ?

● Export advanced quantization/dequantization functions, data-types optimized on PyTorch
side seamlessly.

● Optionally control serialization of specific nn.Module

● Provide additional expressions on symbolic dimensions, helping engine to reason about
them (ie. Batch dimension being always >0).

● Export signal based networks easily (MFCC, MelFilterBanks, …)

20

Thanks for listening

github.com/sonos/tract github.com/sonos/torch-to-nnef

Documentations and past articles:

● Technical documentation tract
● Technical documentation torch-to-nnef
● Sonos tech blog related articles: [1], [2], [3], [4]
● 2019 blog post introducing tract

Interested to use or contribute ?

21

https://github.com/sonos/tract/tree/main/doc
https://sonos.github.io/torch-to-nnef/latest/
https://tech-blog.sonos.com/posts/optimising-a-neural-network-for-inference/
https://tech-blog.sonos.com/posts/the-anatomy-of-efficient-matrix-multipliers/
https://tech-blog.sonos.com/posts/assembly-still-matters-cortex-a53-vs-m1/
https://tech-blog.sonos.com/posts/torch-2-nnef-open-sourcing/
https://medium.com/snips-ai/snips-open-sources-tract-cdc50f437ef2

