

hps://github.com/beio/ | davide@uninstall.it | hps://uninstall.it/

● Tinker with hardware and embedded systems since 2004.

● Long-time open-source dev (since ~2005 contributed to KDE Plasma and others).

● Fell in love with Elixir in 2017 & started the AtomVM the same year

● I love hiking!

About me (Davide Beio)

https://github.com/bettio/
mailto:davide@uninstall.it
https://uninstall.it/

The C/C++ Experience on MCUs (microcontrollers)

● Concurrency? Manual, tricky.
● Binary parsing? Boring & dangerous.
● Async? Callback hell, anyone?
● Memory? Did I free that?

AtomVM: Elixir, Erlang, and

Gleam on Microcontrollers

Elixir, Erlang and Gleam

● Functional languages running on the BEAM virtual machine (the
reference Erlang VM)

● Designed for building highly testable and reliable software
● Erlang: the original BEAM language for highly reliable, distributed systems

(OTP, supervision)
● Elixir: a modern, highly productive BEAM language
● Gleam: a statically typed BEAM language

Similar foundations, dierent strengths

Actor Model: Processes & Messages

● Spawning a process is extremely cheap: you can run millions of them (they

are not OS threads)

● Shared-nothing design: no shared memory or global state; processes

interact only by exchanging messages

● Asynchronous programming becomes simple and natural

[Maybe not million of processes, but definitely a killer feature for an IoT project]

Fault Tolerant by Design

● Erlang was created for Ericsson’s telephony switches, which had to be
continuously available. Goal: “nine nines” (~31 milliseconds/year of
downtime)

● It embraces the idea that failures are inevitable and should be handled, not
avoided

● Fault-tolerance best practices and features (such as supervisors) are built
into Erlang/OTP

[Definitely a killer feature for an embedded project]

Paern Matching

def fact(0), do: 1 # match the base case
def fact(n), do: n * fact(n - 1) # match any other n

case reply do
 %{status: 200, body: "{}"} -> :ignore
 %{status: 200, body: body} -> parse(body)
 %{location: location} -> handle_redirect(location)
 %{} = payload -> handle_error(payload)
end

Paern Matching on Binaries

Paern matching on binaries is one of the Erlang VM strengths.

You can match any single bit out of a payload you received somehow. e.g. from a

LoRa antenna, from a sensor, etc…:

 def parse(
 <<dest::little-unsigned-32, src::little-unsigned-32, pkt_id::little-unsigned-32,
 hop_start::size(3), via_mqtt::size(1), want_ack::size(1),
 hop_limit::size(3), channel_hash::8, 0::16, encrypted_data::binary>>) when src != 0 do

 Logger.debug “Parsing packet #{pkt_id} from #{src}”

 end

[Definitely a killer feature for an IoT project]

AtomVM: Elixir, Erlang, and

Gleam on Microcontrollers

Modern MCU: ESP32 Example

ESP32:

● Cost < 5 €
● Dual Core @ 240MHz
● RAM: ~500KB - 8MB
● Flash: 4MB - 16MB
● Connectivity: WiFi, Bluetooth, etc.
● Lot of GPIOs & integrated peripherals
● Low Power / Baery-friendly

Powerful, but not enough for running the BEAM,
the reference Erlang VM.

What if we could bring somehow the safety,
concurrency, and productivity of the BEAM

ecosystem to these tiny devices?

To the Rescue

AtomVM, A lightweight virtual machine designed to run compiled Erlang,
Elixir and Gleam code on microcontrollers with limited resources.

● Key Trade-os:
○ Memory First: RAM & Flash are precious

○ Portability: New targets in hours, not days

○ Flexible Requirements: Adaptable core

AtomVM

● Already available today: hps://github.com/atomvm/AtomVM
● Runs on *nix, ESP32, RaspberryPi Pico, STM32 (more are coming)

● Production-ready (and ready for your next project)

● Capable of running complex applications

● Advanced features such as JIT and Erlang Distribution
○ Yes, you can cluster MCUs together: and even mix MCUs with traditional BEAM nodes

https://github.com/atomvm/AtomVM

● I used AtomVM for some projects like home automation and LoRa (radio)

nodes

● Mostly any kind of embedded, IoT, and automation projects

● A solid alternative to Arduino, MicroPython, and similar stacks

● In general when you need embedding an Erlang VM in new or

unconventional environments
○ They did it with emscripten and the browser, see also: hps://popcorn.swmansion.com/

What Can I Use AtomVM For?

https://popcorn.swmansion.com/

Join Us

hps://atomvm.org/

Discord: hps://discord.gg/QA7fNjm9Nw

Telegram: hps://t.me/atomvm

Sponsor: hps://github.com/sponsors/atomvm

https://atomvm.org/
https://discord.gg/QA7fNjm9Nw
https://t.me/atomvm
https://github.com/sponsors/atomvm

