
Crowd-Sourcing Realtime Data



Why?

Current state:

• Free software routing engine (OpenTripPlanner, MOTIS)
• Free software public transport app (Öffi, Transportr, Bimba, KDE Itinerary etc.)
• International free software routing deployment (Transitous)

1



What’s next?

• Moving the open / proprietary boundary further
• Minimum-viable operation software suite - “community bus stack”?

• Schedule creation
• Digital Signage
• Realtime data processing

2



Context

• Some operators don’t publish delay data, or don’t know it themselves

3



Plan

• Collect vehicle positions directly from travelers
• Of course opt-in per trip
• Regularly send GPS position

• Interpret GPS-position and calculate delay

4



Collecting Positions

• GPS reception in vehicles
• With modern phones, multiple satelite networks, AGPS, wireless-network-based

geolocation allow roughly correct geolocation in most vehicle types
• Trains often feature onboard portals that allow to retrieve the position from the

train’s GPS.
• Used in microG, KDE Itinerary

5



Collecting Positions

0. User has enabled crowd-sourcing feature
1. User searches for trip
2. App remembers selected trip. Either as part of the regular functionality, or only

for this feature
3. Once start time is reached, app asks for confirmation that user is on the vehicle,

and agrees to share location.
4. GPS position and trip id is regularly sent to API

6



Collecting Positions

• API server exposes positions as a regular GTFS-RT vehicle positions feed
• Can be consumed by delay calculation
• No difference from operator-supplied vehicle positions at this point

7



Interpreting Positions

Prior Art: Transitclock

• Good predictions
• Hard to set up
• Not actively maintained
• Resource intensive
• Relatively unreliable

8



Interpreting Positions

For planet-scale:

• Start with a very simple implementation
• Optimize data model for little resource-comsumption

9



Interpreting Positions: Simple Implementation

• On new position:
• store position to buffer
• if close to stop:

• delay at stop = position timestamp - scheduled time
• propagate delay, catching up not modeled

• if no delay:
• store buffered positions. That will provide more (time, position) pairs that can be

used just like stops

• else:
• clear buffer

10



Interpreting Positions

11



Interpreting Positions

12



Interpreting Positions

• Expose standard GTFS-RT trip-update feed
• Can be consumed by standard routing software (MOTIS, OpenTripPlanner)

13



Not-Live Demo

POST http://localhost:3000/api/v1/submit
content-type: application/json

{
"position": {"lat": 43.58199, "lon": 19.52472},
"motis_trip_id": "20260127_19:54_me-zpcg_235",
"timestamp": 1769566648

}

14



Not-Live Demo

15



Next Steps

• Test instance deployed in Transitous
• Use in production

• Client implementation in Bimba?

16


	Crowd-Sourcing Realtime Data

