Crowd-Sourcing Realtime Data

Current state:

= Free software routing engine (OpenTripPlanner, MOTIS)
= Free software public transport app (Offi, Transportr, Bimba, KDE lItinerary etc.)
= International free software routing deployment (Transitous)

What'’s next?

= Moving the open / proprietary boundary further
= Minimum-viable operation software suite - “community bus stack”?

= Schedule creation
= Digital Signage
= Realtime data processing

= Some operators don't publish delay data, or don't know it themselves

= Collect vehicle positions directly from travelers
= Of course opt-in per trip
= Regularly send GPS position

= Interpret GPS-position and calculate delay

Collecting Positions

= GPS reception in vehicles
= With modern phones, multiple satelite networks, AGPS, wireless-network-based

geolocation allow roughly correct geolocation in most vehicle types

= Trains often feature onboard portals that allow to retrieve the position from the
train's GPS.

= Used in microG, KDE lItinerary

Collecting Positions

0. User has enabled crowd-sourcing feature

1. User searches for trip

2. App remembers selected trip. Either as part of the regular functionality, or only
for this feature

3. Once start time is reached, app asks for confirmation that user is on the vehicle,
and agrees to share location.

4. GPS position and trip id is regularly sent to API

Collecting Positions

= API server exposes positions as a regular GTFS-RT vehicle positions feed

= Can be consumed by delay calculation
= No difference from operator-supplied vehicle positions at this point

Interpreting Positions

Prior Art: Transitclock

= Good predictions

= Hard to set up

= Not actively maintained
= Resource intensive

= Relatively unreliable

Interpreting Positions

For planet-scale:

= Start with a very simple implementation
= Optimize data model for little resource-comsumption

Interpreting Positions: Simple Implementation

= On new position:
= store position to buffer
= if close to stop:

= delay at stop = position timestamp - scheduled time
= propagate delay, catching up not modeled

= if no delay:

= store buffered positions. That will provide more (time, position) pairs that can be
used just like stops

= else:

= clear buffer

10

Interpreting Positions

’; 'T ?l ?‘ km
Gy &) ®
SCL\fd“/C 10: 5% €10 :0¥ 0 1G5
yeal +ime 105 1010 1012 10 17
s
0{@/0\7/ O L L
7\ ' (v\"w(WVED{AC‘HOV!S
coment
Ros hon

11

Interpreting Positions

1 * 3 Lf[(,/v\

(/ (1) DE (D@D () &e ()
Schegule

10: 05 vsv 4:r 19 :0F 09" w«.gm/b IR 01t 1915

veal time o 0F 0k 090100 10 101z 10 1%
" n 1l " 1
deloy o ot ¢ L
7\ ‘@ (v\"w(WVED{ADHOV!}
VAL At Oy (mv‘«
/4
coment rw netel Vg
Ros hon

12

Interpreting Positions

= Expose standard GTFS-RT trip-update feed
= Can be consumed by standard routing software (MOTIS, OpenTripPlanner)

13

POST http://localhost:3000/api/v1l/submit
content-type: application/json

{
"position": {"lat": 43.58199, "lon": 19.52472},
"motis_trip_id": "20260127_19:54_me-zpcg_235",
"timestamp": 1769566648

}

14

Not-Live Demo

Journey Details X

19:54 19:54 Beograd Centar
> Bar

~ 16 intermediate stops (13 h 25 min)

20:02 20:02 Rakovica

20:44 20:44 Lazarevac

2051 20:51 Lajkovac

21:09 21:09 Valjevo

22:05 00:30 Kosjeri¢

22:34 00:59 Pozega

22:56 01:21 Uzice

00:51 03:16 Priboj 15

= Test instance deployed in Transitous

= Use in production

= Client implementation in Bimba?

16

	Crowd-Sourcing Realtime Data

