Eduard Drusa <nopisonnope@gmail.com>

Be3 5B PR




1 The problem
2 Land of lock-free
3 The solution

4 What's new?




CMRX interrupt handlers can use kernel services
This causes race conditions
Disabling interrupts in critical sections increases latency

Mutexes cause instant deadlock

LN RRITRE




typedef struct {
/* internal structure */
} complex_data_t;

Ferdinand: "This looks a lot like problem complex_data_t shared_data;
for lock-free approach” vold update_data(int input) {

complex_data_t local;
Research papers, also using LLMs /* fill in local copy */
mutex_lock(&data_lock);
shared_data = local;
mutex_unlock(&data_lock);

Suggested code reminds me of transactions

It has a lot of overhead }

complex_data_t read_data(void) {
complex_data_t local;
mutex_lock(&data_lock);
local = shared_data;
mutex_unlock(&data_lock);

return local;
2 W/ ILNVA

LN RRITRE




Lock-free programming:

At least one context runs to completion without blocking
Wait-free programming:

All contexts run to completion without blocking

Blocking is traded for retrying (hello LOAD/STORE conditional)

LN RRITRE




Critical Section

Read+Write case:

mutex_lock(&data_lock);

complex_data_t * entry; complex_data_t * entry;
entry = /* find entry */; entry = /* find entry */;

/* modify data */
mutex_unlock(&data_lock); /* modify data */




Critical Section

Read-Only case:

mutex_lock(&data_lock);

complex_data_t * entry; complex_data_t * entry;
entry = /* find entry */; entry = /* find entry */;
/* examine data */

/* examine data */

mutex_unlock(&data_lock);

/* data inconsistent */

}




Transactions implement ‘read committed™ level of isolation
Read+Write transaction invalidates all transactions started later on commit
Read-Only transaction invalidates nothing on commit

Any invalidated transaction will fail to commit

LN RRITRE




The spirit of lock-free: Blocking is traded for iterating
Data structures develop some interesting properties
Uniprocessor: Entries are consistent, data structure may temporarilly not be

Multiprocessor: Both entries and whole data structures may be inconsistent

LN RRITRE




Readers don't block writers

Transaction implementation is really trivial

Opportunity for customized reaction to contention

Need for defensive programming

CMRX kernel case: Long lookup, short modifications, YMMV

It becomes really funny if you go multicore

LN RRITRE




What's new?

ARM Cortex-M4 and M7, possibly other architectures

On platforms with atomics support

POSIX hosted port (you are watching it right now)
Basic ARMv8M support, RISC-V and MIPS ports in progress

Increased interest, contributors

Memory protection is still a curse word around here




:

'B&%%ﬂﬁ %

GitHub Repository: Project Website:

https://github.com/ventZl/cmrx https://cmrxrtos.org/

Eduard Drusa <nopisonnope@gmail.com>




