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CMRX interrupt handlers can use kernel services
This causes race conditions
Disabling interrupts in critical sections increases latency

Mutexes cause instant deadlock
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typedef struct {
/* internal structure */
} complex_data_t;

Ferdinand: "This looks a lot like problem complex_data_t shared_data;
for lock-free approach” vold update_data(int input) {

complex_data_t local;
Research papers, also using LLMs /* fill in local copy */
mutex_lock(&data_lock);
shared_data = local;
mutex_unlock(&data_lock);

Suggested code reminds me of transactions

It has a lot of overhead }

complex_data_t read_data(void) {
complex_data_t local;
mutex_lock(&data_lock);
local = shared_data;
mutex_unlock(&data_lock);

return local;
2 W/ ILNVA

LN RRITRE




Lock-free programming:

At least one context runs to completion without blocking
Wait-free programming:

All contexts run to completion without blocking

Blocking is traded for retrying (hello LOAD/STORE conditional)
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Critical Section

Read+Write case:

mutex_lock(&data_lock);

complex_data_t * entry; complex_data_t * entry;
entry = /* find entry */; entry = /* find entry */;

/* modify data */
mutex_unlock(&data_lock); /* modify data */




Critical Section

Read-Only case:

mutex_lock(&data_lock);

complex_data_t * entry; complex_data_t * entry;
entry = /* find entry */; entry = /* find entry */;
/* examine data */

/* examine data */

mutex_unlock(&data_lock);

/* data inconsistent */

}




Transactions implement ‘read committed™ level of isolation
Read+Write transaction invalidates all transactions started later on commit
Read-Only transaction invalidates nothing on commit

Any invalidated transaction will fail to commit
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The spirit of lock-free: Blocking is traded for iterating
Data structures develop some interesting properties
Uniprocessor: Entries are consistent, data structure may temporarilly not be

Multiprocessor: Both entries and whole data structures may be inconsistent
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Readers don't block writers

Transaction implementation is really trivial

Opportunity for customized reaction to contention

Need for defensive programming

CMRX kernel case: Long lookup, short modifications, YMMV

It becomes really funny if you go multicore
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What's new?

ARM Cortex-M4 and M7, possibly other architectures

On platforms with atomics support

POSIX hosted port (you are watching it right now)
Basic ARMv8M support, RISC-V and MIPS ports in progress

Increased interest, contributors

Memory protection is still a curse word around here
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GitHub Repository: Project Website:

https://github.com/ventZl/cmrx https://cmrxrtos.org/
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