
ARM SCP firmware porting

Marek Vasut

February 1st, 2026

SCP – motivation – why

▶ Cortex-A core(s) running Linux or another full OS
▶ Optional Cortex-M core(s) running RTOS
▶ Possibly other cores
▶ All cores share resources, clock, pin controller, RAM, . . .
▶ Traditional embedded systems:

▶ Cortex-A is the primary controller of the system
▶ Shared resources depend on well behaved components

▶ Contemporary embedded systems:
▶ Cortex-A is one part of the system, so is Cortex-M RTOS . . .
▶ Shared resources cannot depend on well behaved components
▶ Central arbiter for resource access – SCP

SCP – implementation – what

▶ SCP is an abbreviation for System Control Processor
▶ SCP is another core in the system, often Cortex-M or Cortex-R
▶ SCP runs firmware, which exposes interfaces for other cores
▶ SCP implements resource access policy
▶ Other cores interact with SCP to configure pinmux, clock, . . .
▶ Other cores cannot directly configure pinmux, clock, . . .

SCP – interfaces – how

▶ SCP exposes interfaces through which cores communicate with
it

▶ Communication channel often some sort of mailbox and
SHMEM

▶ Communication is bidirectional, A2P and P2A
▶ A2P – Agent to Platform (Linux to SCP, requests and

responses)
▶ P2A – Platform to Agent (SCP to Linux, notifications)
▶ Protocol on top, usually SCMI

SCMI

▶ SCMI – System Control and Management Interface
(clock, pinmux, regulators . . .)

▶ ARM DEN 0056 [LINK]
▶ SCMI contains multiple protocols in it, is discoverable, and can

be extended with vendor extras
▶ SCMI protocols are request/response based, each have a few

commands and parameters
▶ SCMI base protocol – Contains version, used for protocol

discovery
▶ SCMI PD, system PM, performance, clock, sensor, reset,

voltage . . . protocols
▶ SCMI protocols use IDs to identify its objects (clock IDs, reset

IDs), this is exposed to other agents and is therefore a
firmware ABI!

https://developer.arm.com/documentation/den0056/latest

SCP firmware

▶ Software that runs on the SCP
▶ The other side of the SCMI link, handles SCMI requests
▶ Handles general platform management
▶ Responsible for request synchronization and concensus
▶ Various implementations exist, some closed, some open
▶ ARM SCP firmware is BSD-3-Clause [LINK]

https://gitlab.arm.com/firmware/SCP-firmware

ARM SCP firmware

▶ Sources at [LINK]
▶ SCP implementation meant to run mainly on Cortex-M
▶ Largely self-contained, but depends on arm-none- toolchain

and newlib
▶ Base code is simple, set up the Cortex-M and enter main loop
▶ Every extension to the base is added via modules
▶ Modules implement various SCMI protocols, power

management, all of it
▶ Many readily available modules are in tree

https://gitlab.arm.com/firmware/SCP-firmware

ARM SCP firmware port options

▶ SCP does platform initialization:
▶ SCP acts as BL2
▶ Requires much more code
▶ SCP build process generates two payloads
▶ Better leave BL2 to U-Boot SPL . . .

▶ SPL is started after platform initialization:
▶ SCP acts as SCP only
▶ Requires less code, is less complicated
▶ SCP build process generate only SCP payload
▶ This is used further in this text

Terminology

▶ Read doc/framework.md for more details, in short:
▶ Framework ... Common SCP code
▶ Module ... Encapsulated generic code for driver/service/. . .

(e.g. UART driver)
▶ Element ... Instance of module

(e.g. UART driver instance for uart@0x12340000)
▶ Event ... Message queue and passing between elements
▶ Notifications ... Message broadcast from modules

(special event)

Porting ARM SCP firmware
▶ Clone sources at [LINK]
▶ Set up matching toolchain, arm-none-eabi- is also in Debian
▶ The easy next step is to fork existing product:

▶ product/synquacer/ is a good choice
▶ Synquacer SCP is simple, meant for Cortex-M3
▶ Synquacer SCP is built as both BL2 and SCP,

ignore scp_romfw BL2
▶ The scp_ramfw is a good starting point template
▶ Duplicate product/synquacer/ into product/yourboard/,

rename as needed
▶ Select CPU core in

product/yourboard/scp_ramfw/Toolchain*
▶ Use git, create checkpoints often:

git add -u ; git commit -sm checkpoint
▶ Compile the renamed result, to verify it builds

1 git clean -fqdx
2 make -j$(nproc) -f Makefile.cmake PRODUCT=yourboard MODE=release

https://gitlab.arm.com/firmware/SCP-firmware

Init process

▶ Boot has two phases, pre-runtime and runtime
▶ Pre-runtime contains Module/Element init, bind and start
▶ Runtime is the main loop
▶ Most things during porting go wrong during pre-runtime
▶ The interesting core files for Cortex-M are

arch/arm/arm-m/src/arch_main.c main() and
framework/src/fwk_arch.c fwk_arch_init()

▶ The main() function calls fwk_arch_init()
▶ The fwk_arch_init() does init work and ultimately lands in

main loop __fwk_run_main_loop()

Early printing
▶ When porting SCP, it is helpful to get early signs of life
▶ SCP has logging facility, but it becomes available too late to

debug early stages
▶ SCP logging facility does not print immediatelly, which makes

printf() debugging harder
▶ Make use of the non-BL2 port, let BL2 initialize UART and

simply feed data into UART TX FIFO
▶ Roll your own custom print function

1 fwk_mmio_write_32(UART_TX_FIFO_ADDR, 'x');
2 // Poll for TX FIFO empty, to assure characters is out of FIFO
3 fwk_mmio_write_32(UART_TX_FIFO_ADDR, 'y');
4 // Poll for TX FIFO empty, to assure characters is out of FIFO
5 fwk_mmio_write_32(UART_TX_FIFO_ADDR, 'z');
6 // Poll for TX FIFO empty, to assure characters is out of FIFO
7 fwk_mmio_write_32(UART_TX_FIFO_ADDR, '\r');
8 // Poll for TX FIFO empty, to assure characters is out of FIFO
9 fwk_mmio_write_32(UART_TX_FIFO_ADDR, '\n');

10 // Poll for TX FIFO empty, to assure characters is out of FIFO

Create UART driver module I

▶ UART driver module goes into
product/yourboard/module/uart

▶ Do not forget Module.cmake and CMakeLists.txt to build
the module

▶ Stream adapter – module logging facility

1 const struct fwk_module module_uart = {
2 .type = FWK_MODULE_TYPE_DRIVER, // Module type -- driver
3

4 .init = mod_uart_init, // Module init callback
5 .element_init = mod_uart_element_init, // Element init callback
6

7 .adapter = (struct fwk_io_adapter){ // .. Stream adapter
8 .open = mod_uart_io_open,
9 .putch = mod_uart_io_putch,

10 .close = mod_uart_close,
11 },
12 };

Create UART driver module II

1 static int mod_uart_init(fwk_id_t module_id, unsigned int element_count, const void *data)
2 {
3 /* Module init on boot */
4 return FWK_SUCCESS;
5 }
6
7 static int mod_uart_element_init(fwk_id_t element_id, unsigned int unused, const void *data)
8 {
9 /* Hardware instance init on boot */

10 return FWK_SUCCESS;
11 }
12
13 static int mod_uart_io_open(const struct fwk_io_stream *stream)
14 {
15 /* Start the hardware instance */
16 return FWK_SUCCESS;
17 }
18
19 int mod_uart_io_putch(const struct fwk_io_stream *stream, char ch)
20 {
21 /* Write character to FIFO */
22 return FWK_SUCCESS;
23 }
24
25 int mod_uart_close(const struct fwk_io_stream *stream)
26 {
27 /* Flush FIFO etc. */
28 return FWK_SUCCESS;
29 }

Instantiate UART driver element I

▶ Include module in
product/yourboard/scp_ramfw/Firmware.cmake

▶ Include module config in
product/yourboard/scp_ramfw/CMakeLists.txt

▶ Implement module config

1 # CMakeLists.txt
2 target_sources(
3 yourboard-bl2
4 PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}/config_uart.c"
5 ...

1 # Firmware.cmake
2 list(PREPEND SCP_MODULE_PATHS "${CMAKE_CURRENT_LIST_DIR}/../module/uart")
3 list(APPEND SCP_MODULES "uart")
4 ...

Instantiate UART driver element II

▶ Include module in
product/yourboard/scp_ramfw/Firmware.cmake

▶ Include module config in
product/yourboard/scp_ramfw/CMakeLists.txt

▶ Implement module config

1 #include <fwk_element.h>
2 #include <fwk_id.h>
3 #include <fwk_macros.h>
4 #include <fwk_module.h>
5
6 struct fwk_module_config config_uart = {
7 .elements = FWK_MODULE_STATIC_ELEMENTS({
8 [0] = {
9 .name = "UART0",

10 .data = &((struct mod_plat_user_element_cfg) {
11 /* Use these passed data in module */
12 }),
13 },
14
15 [1] = { 0 }, // Sentinel
16 }),
17 };

Immediate printing using facilities

▶ Test the UART module, print something
▶ It is possible to force print outside of logging facilities
▶ This is a hack:

1 // Print buffer is local and on stack
2 char pb[256];
3 // Print string into print buffer
4 snprintf(pb, 256, "%s[%d]\r\n", __func__, __LINE__);
5 // Push the result out through the UART driver
6 fwk_io_puts(fwk_io_stdout, pb);

Next steps

▶ Implement mailbox driver to communicate with other CPUs
▶ Implement clock, power domain, . . . drivers
▶ Include generic "transport" and "scmi" modules
▶ Instantiate generic modules which includes SCMI base protocol
▶ Depending on what SCMI protocols are needed:

▶ Implement driver for that IP and instantiate it
▶ Include and instantiate generic "scmi-*" module
▶ Connect the generic SCMI code with IP

Conclusion

▶ ARM SCP firmware port to existing hardware SCP is possible
▶ Code is publicly available, BSD-3-Clause
▶ Port can be implemented incrementally
▶ Be mindful of SCMI protocol ID allocation, this is ABI

End

Thank you for your attention

Marek Vasut <marek.vasut+fosdem26@mailbox.org>

