ARM SCP firmware porting

Marek Vasut

February 1st, 2026



SCP -

vVvyVvyVvyy

motivation — why

Cortex-A core(s) running Linux or another full OS
Optional Cortex-M core(s) running RTOS

Possibly other cores

All cores share resources, clock, pin controller, RAM, ...

Traditional embedded systems:
» Cortex-A is the primary controller of the system
» Shared resources depend on well behaved components
Contemporary embedded systems:
» Cortex-A is one part of the system, so is Cortex-M RTOS ...
» Shared resources cannot depend on well behaved components
» Central arbiter for resource access — SCP



SCP - implementation — what

SCP is an abbreviation for System Control Processor

SCP is another core in the system, often Cortex-M or Cortex-R
SCP runs firmware, which exposes interfaces for other cores
SCP implements resource access policy

Other cores interact with SCP to configure pinmux, clock, ...

vVvyvyVvVvyypy

Other cores cannot directly configure pinmux, clock, ...



SCP -

interfaces — how

SCP exposes interfaces through which cores communicate with
it

Communication channel often some sort of mailbox and
SHMEM

Communication is bidirectional, A2P and P2A

A2P — Agent to Platform (Linux to SCP, requests and
responses)

P2A — Platform to Agent (SCP to Linux, notifications)
Protocol on top, usually SCMI



SCMI

SCMI — System Control and Management Interface
(clock, pinmux, regulators ...)

ARM DEN 0056 [LINK]

SCMI contains multiple protocols in it, is discoverable, and can
be extended with vendor extras

SCMI protocols are request/response based, each have a few
commands and parameters

SCMI base protocol — Contains version, used for protocol
discovery

SCMI PD, system PM, performance, clock, sensor, reset,
voltage ... protocols

SCMI protocols use IDs to identify its objects (clock IDs, reset

IDs), this is exposed to other agents and is therefore a
firmware ABI!


https://developer.arm.com/documentation/den0056/latest

SCP firmware

Software that runs on the SCP

The other side of the SCMI link, handles SCMI requests
Handles general platform management

Responsible for request synchronization and concensus
Various implementations exist, some closed, some open
ARM SCP firmware is BSD-3-Clause [LINK]

vVvyvyVvVvYyypy


https://gitlab.arm.com/firmware/SCP-firmware

ARM SCP firmware

v

Sources at [LINK]
SCP implementation meant to run mainly on Cortex-M

Largely self-contained, but depends on arm-none- toolchain
and newlib

Base code is simple, set up the Cortex-M and enter main loop
Every extension to the base is added via modules

Modules implement various SCMI protocols, power
management, all of it

Many readily available modules are in tree


https://gitlab.arm.com/firmware/SCP-firmware

ARM SCP firmware port options

» SCP does platform initialization:
» SCP acts as BL2
» Requires much more code
» SCP build process generates two payloads
» Better leave BL2 to U-Boot SPL ...

» SPL is started after platform initialization:

» SCP acts as SCP only

» Requires less code, is less complicated

» SCP build process generate only SCP payload
» This is used further in this text



Terminology

v

Read doc/framework.md for more details, in short:

Framework ... Common SCP code

Module ... Encapsulated generic code for driver/service/. ..

(e.g. UART driver)

Element ... Instance of module
(e.g. UART driver instance for uart@0x12340000)

Event ... Message queue and passing between elements

Notifications ... Message broadcast from modules
(special event)



Porting ARM SCP firmware

» Clone sources at [LINK]
» Set up matching toolchain, arm-none-eabi- is also in Debian
» The easy next step is to fork existing product:
» product/synquacer/ is a good choice
» Synquacer SCP is simple, meant for Cortex-M3
» Synquacer SCP is built as both BL2 and SCP,
ignore scp_romfw BL2
» The scp_ramfw is a good starting point template
» Duplicate product/synquacer/ into product/yourboard/
rename as needed
» Select CPU core in
product/yourboard/scp_ramfw/Toolchain*
> Use git, create checkpoints often:
git add -u ; git commit -sm checkpoint

» Compile the renamed result, to verify it builds

1 git clean -fqdx
2 make -j$(nproc) -f Makefile.cmake PRODUCT=yourboard MODE=release



https://gitlab.arm.com/firmware/SCP-firmware

Init process

Boot has two phases, pre-runtime and runtime
Pre-runtime contains Module/Element init, bind and start
Runtime is the main loop

Most things during porting go wrong during pre-runtime

vVvYyyvyy

The interesting core files for Cortex-M are
arch/arm/arm-m/src/arch_main.c main() and
framework/src/fwk_arch.c fwk_arch_init()

v

The main() function calls fwk_arch_init ()

» The fwk_arch_init () does init work and ultimately lands in
main loop __fwk_run_main_loop()



Early printing

© 0 N O Utk W N

=
o

» When porting SCP, it is helpful to get early signs of life
» SCP has logging facility, but it becomes available too late to

debug early stages

» SCP logging facility does not print immediatelly, which makes

printf() debugging harder

» Make use of the non-BL2 port, let BL2 initialize UART and

simply feed data into UART TX FIFO
» Roll your own custom print function

fwk_mmio_write_32(UART_TX_FIFO_ADDR, 'x');

// Poll for TX FIFO empty, to assure characters
fwk_mmio_write_32(UART_TX_FIFO_ADDR, 'y');

// Poll for TX FIFO empty, to assure characters
fwk_mmio_write_32(UART_TX_FIFO_ADDR, 'z');

// Poll for TX FIF0O empty, to assure characters
fwk_mmio_write_32(UART_TX_FIFO_ADDR, '\r');

// Poll for TX FIF0O empty, to assure characters
fwk_mmio_write_32(UART_TX_FIFO_ADDR, '\n');

// Poll for TX FIFO empty, to assure characters

%S

18

18

18

%S

out

out

out

out

out

of FIFO
of FIFO
of FIFO
of FIFO

of FIFO




Create UART driver module |

» UART driver module goes into
product/yourboard/module/uart

» Do not forget Module.cmake and CMakeLists.txt to build

the module
» Stream adapter — module logging facility

1 const struct fwk_module module_uart = {

2 .type = FWK_MODULE_TYPE_DRIVER, // ...... Module type -- driver
3

4 .init = mod_uart_init, // ............... Module init callback
5 .element_init = mod_uart_element_init, // Element init callback
6

7 .adapter = (struct fwk_io_adapter){ // .. Stream adapter

8 .open = mod_uart_io_open,

9 .putch = mod_uart_io_putch,

10 .close = mod_uart_close,

11 },

H
V]

-

o




Create UART driver module Il

©OTO U WN -

R R N N e e e e e el
COIONRWN—ROORTDU A WN RO

static int mod_uart_init(fwk_id_t module_id, unsigned int element_count, const void *data)
/* Module init on boot */
return FWK_SUCCESS;
¥
static int mod_uart_element_init( fwk_id_t element_id, unsigned int unused, const void *data)
/* Hardware instance init on boot */
return FWK_SUCCESS;
¥
static int mod_uart_io_open(const struct fwk_io_stream *stream)
/* Start the hardware instance */
return FWK_SUCCESS;
¥
int mod_uart_io_putch(const struct fwk_io_stream *stream, char ch)
{
/* Write character to FIF0 */
return FWK_SUCCESS;
¥
int mod_uart_close(const struct fwk_io_stream *stream)
{
/* Flush FIF0 etc. */
return FWK_SUCCESS;
¥




Instantiate UART driver element |

» Include module in
product/yourboard/scp_ramfw/Firmware.cmake

» Include module config in
product/yourboard/scp_ramfw/CMakelists.txt

» Implement module config

# CMakeLists.tzt
target_sources (
yourboard-bl2
PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}/config_uart.c"

T W N =

# Firmware.cmake
list (PREPEND SCP_MODULE_PATHS "${CMAKE_CURRENT_LIST_DIR}/../module/uart")
list (APPEND SCP_MODULES "uart")

Lo SR




Instantiate UART driver element Il

Qo3 UAWN -

» Include module in
product/yourboard/scp_ramfw/Firmware.cmake

» Include module config in
product/yourboard/scp_ramfw/CMakelLists.txt

» Implement module config

#include
#include
#include
#include

<fuk_element.h>
<fuk_id.h>
<fuwk_macros.h>
<fwk_module.h>

struct fwk_module_config config uart = {
.elements = FWK_MODULE_STATIC_ELEMENTS ({

[0l = {
.name = "UARTO",
.data = &((struct mod_plat_user_element_cfg) {

/* Use these passed data in module */

b,

1,

[11 = { 0}, // Sentinel

b,




Immediate printing using facilities

D U s W N =

» Test the UART module, print something
> It is possible to force print outside of logging facilities
» This is a hack:

// Print buffer is local and on stack

char pb[256];

// Print string into print buffer

snprintf (pb, 256, "/s[/d]\r\n", __func__, __LINE__);
// Push the result out through the UART driver
fwk_io_puts(fwk_io_stdout, pb);




Next steps

Implement mailbox driver to communicate with other CPUs
Implement clock, power domain, ... drivers

>

>

» Include generic "transport" and "scmi" modules

» Instantiate generic modules which includes SCMI base protocol
>

Depending on what SCMI protocols are needed:

» Implement driver for that IP and instantiate it
» Include and instantiate generic "scmi-*" module
» Connect the generic SCMI code with IP



Conclusion

» ARM SCP firmware port to existing hardware SCP is possible
» Code is publicly available, BSD-3-Clause

» Port can be implemented incrementally

» Be mindful of SCMI protocol ID allocation, this is ABI



End

Thank you for your attention

Marek Vasut <marek.vasut+fosdem26@mailbox.org>



