

Guix Container Images
and what you can do with them

Simon Josefsson <simon@josefsson.org>
2026-01-31 FOSDEM’26 Belgium

License: CC-BY-SA-4.0

B1D2BD1375BECB784CF4F8C4D73CF638C53C06BE

1 / 16

mailto:simon@josefsson.org

I like Continous compilation & testing

2 / 16

From: Ludovic Courtès
Subject: Building a Docker image for GitLab-CI
Date: Tue, 13 Feb 2024 11:31:28 +0100

Hello Guix!

Has anyone succeeded in building a Docker image suitable for use in
GitLab-CI? I haven’t. Here’s what I tried.

Initially, I built an image with ‘guix system image -t docker …’ but
that doesn’t work because then the image’s “entry point” is shepherd,
but shepherd never returns. Thus, GitLab-CI would spawn the image and
eventually time out.

So I tried this instead:
 guix pack guix bash-minimal coreutils-minimal grep net-base \
 --save-provenance -S /bin=bin -S /share=share -S /etc=etc \
 -f docker --max-layers=100

...

Inspiration

3 / 16

Declaring v1.0
From: Simon Josefsson
Subject: Re: Building a Docker image for GitLab-CI
Date: Wed, 25 Dec 2024 21:38:14 +0100

All,

Here are some updates about Guix container images for GitLab pipelines
or local podman usage. I'm declaring this v1.0.

tl;dr: https://gitlab.com/debdistutils/guix/container

Final images are built from a pure Guix container now. Everything is
done on public shared GitLab runners in the pipeline, no container
uploads. Stage0 creates Debian+Guix that builds a pure Guix stage1
which builds the final Stage2 images. The content of these images
appears to be reproducible, but alas the docker images itself aren't:
https://issues.guix.gnu.org/75090

...

4 / 16

https://gitlab.com/debdistutils/guix/container
https://issues.guix.gnu.org/75090

One year of use

● During 2025, the Guix Container Images was integrated into
GitLab CI/CD Pipelines for Libidn, Libidn2, OATH Toolkit,
Libtasn1, GNU SASL, InetUtils, Libntlm, Guile-GnuTLS, etc

5 / 16

One year of use

● During 2025, the Guix Container Images was integrated into
GitLab CI/CD Pipelines for Libidn, Libidn2, OATH Toolkit,
Libtasn1, GNU SASL, InetUtils, Libntlm, Guile-GnuTLS, etc

● The ”make dist” tarballs used for releases are bit-by-bit identical
and reproducible with tarballs built on GitLab.com from source

6 / 16

One year of use

● During 2025, the Guix Container Images was integrated into
GitLab CI/CD Pipelines for Libidn, Libidn2, OATH Toolkit,
Libtasn1, GNU SASL, InetUtils, Libntlm, Guile-GnuTLS, etc

● The ”make dist” tarballs used for releases are bit-by-bit identical
and reproducible with tarballs built on GitLab.com from source

● Guix was dropped from Debian breaking my setup – using saved
non-rebuildable containers like the cool kids continued to work

7 / 16

Initial GitLab Build Design

● Initial design overly complex:

– Stage0: Install Guix in a Debian container, save container
– Stage1: Build a pure Guix container using previous container
– Stage2: Build another pure Guix container using previous container

● I thought I could get to reproducibility this way

8 / 16

New Design

● New design - https://gitlab.com/debdistutils/guix/container
● Realized the Debian+Guix containers had standalone use

● https://hub.docker.com/r/jas4711/debian-with-guix

● For reproducibility testing, having two ”similar” containers with
Guix helps
– Trisquel and Ubuntu with Guix
– https://hub.docker.com/r/jas4711/guix-on-dpkg

● Take upstream container and ./guix-install.sh && guix pull and
upload resulting container into a registry

9 / 16

https://gitlab.com/debdistutils/guix/container
https://hub.docker.com/r/jas4711/debian-with-guix
https://hub.docker.com/r/jas4711/guix-on-dpkg

New Design

● Stage1: Use Debian+Guix to create pure Guix container
– pack=$(guix pack $GUIX_PACKS --save-provenance -S /bin=bin -S /share=share -f

docker --image-tag=guix –max-layers=8)

– skopeo --insecure-policy copy --additional-tag $CI_REGISTRY_IMAGE:
$CI_JOB_NAME docker-archive://$pack docker://$CI_REGISTRY_IMAGE:
$CI_JOB_NAME

● Stage2: Use Trisquel/Ubuntu container to reproduce it
● Test & Deploy to GitLab registry and Docker Hub

– Amd64, arm64, ppc64el supported – riscv64 exists but not published
(no QEMU builds, using real hardware)

10 / 16

How to Use - interactively

$ podman run -it –entrypoint=/bin/sh docker.io/jas4711/guix:latest

sh-5.1# guix describe

 guix 2d4ed08

 repository URL: https://git.guix.gnu.org/guix.git

 branch: master

 commit: 2d4ed08662714ea46cfe0b41ca195d1ef845fd1b

sh-5.1# exit

11 / 16

.gitlab-ci.yml
test-amd64-latest-wget-configure-make-libksba:
 image: registry.gitlab.com/debdistutils/guix/container:latest
 before_script:
 - groupadd --gid 0 root
 - useradd --uid 0 --gid root --shell /bin/sh --home-dir / --system root
 - cp -rL /gnu/store/*profile/etc/* /etc/
 - groupadd --system guixbuild
 - for i in $(seq -w 1 10); do useradd -g guixbuild -G guixbuild -d /var/empty
-s $(command -v nologin) -c "Guix build user $i" --system guixbuilder$i; done
 - export HOME=/
 - env LANG=C.UTF-8 guix-daemon --build-users-group=guixbuild &
 - guix archive --authorize < /share/guix/ci.guix.gnu.org.pub
 - guix archive --authorize < /share/guix/bordeaux.guix.gnu.org.pub
 - guix describe
 - guix install libgpg-error
 - GUIX_PROFILE="//.guix-profile"
 - . "$GUIX_PROFILE/etc/profile"
 script:
 - wget https://www.gnupg.org/ftp/gcrypt/libksba/libksba-1.6.7.tar.bz2
 - tar xfa libksba-1.6.7.tar.bz2
 - cd libksba-1.6.7
 - ./configure
 - make V=1
 - make check VERBOSE=t V=1

12 / 16

sendmail.mc deja vu

 - groupadd --gid 0 root
 - useradd --uid 0 --gid root --shell /bin/sh --home-dir / --system root
 - cp -rL /gnu/store/*profile/etc/* /etc/
 - groupadd --system guixbuild
 - for i in $(seq -w 1 10); do useradd -g guixbuild -G guixbuild -d /var/empty -s $
(command -v nologin) -c "Guix build user $i" --system guixbuilder$i; done
 - export HOME=/
 - env LANG=C.UTF-8 guix-daemon --build-users-group=guixbuild &
 - guix archive --authorize < /share/guix/ci.guix.gnu.org.pub
 - guix archive --authorize < /share/guix/bordeaux.guix.gnu.org.pub

13 / 16

Hide things or not?

● How come everything you do has already been done before?
● MetaCall Guix produce Guix containers on GitHub since 2019
● Uses a custom script as container entry-point:

– https://github.com/metacall/guix/blob/master/scripts/entry-point.sh

● Good inspiration for my effort – would be useful to compare
goals and design in detail

14 / 16

https://github.com/metacall/guix/blob/master/scripts/entry-point.sh

What to use Guix containers for? Reproducible tarballs!

● Define two GitLab CI/CD jobs that builds your
project and run ’make dist’

● Define another GitLab CI/CD job that run
sha256sum on both artifacts and compare

● Fail pipeline if artifacts mismatch

15 / 16

What to use Guix containers for? Reproduce tarballs!

● Just because tarballs were reproducible at release time does
not mean they can be reproduced later on

● Normally this is not the case… timestamps with day or month
● Using the Guix time-machine inside a Guix container allows

you to confirm reproducibility of old tarballs continously
● https://gitlab.com/debdistutils/verify-reproducible-releases
● Thank you Guix time machine!

16 / 16

https://gitlab.com/debdistutils/verify-reproducible-releases

Security vs Let me do what I want

● Guix’s guix-daemon can be run root-less now!
● Except not on GitLab shared runners – no user namespaces
● Ironically the root-less guix-daemon requires use of –cap-

add=CAP_SYS_ADMIN,CAP_NET_ADMIN and/or –disable-
chroot and/or --security-opt seccomp=unconfined and/or
privileged=true runners depending on platform

● Regression compared to Guix v1.4.0
● https://codeberg.org/guix/guix/issues/3917

17 / 16 oops please allocate CVE

https://codeberg.org/guix/guix/issues/3917

Thank You!

Questions?

18 / 18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

