Guix Container Images

and what you can do with them

Simon Josefsson <simon@josefsson.org>
2026-01-31 FOSDEM’'26 Belgium

| License: CC-BY-SA-4.0
G u ix B1D2BD1375BECB784CF4F8C4D73CF638C53C06BE

1/16

mailto:simon@josefsson.org

| like Continous compilation & testing

G gsasl / Guile-GnuTLS / Pipelines / #2286494118

doc: Improve NEWS item

& @ Passed Created 1day ago by Simon Josefsson, finished 1day ago
2
* For commit 2373aeda (3
<>
In ‘main
@ Scheduled ' latest branch €O 42 jobs @ 28.59 ® 3 minutes 24 seconds, queued for 7 seconds
D
o) Pipeline Jobs 42 Tests 0
@
e Group jobs by | Stage | Job dependencies
i
S ,
build repro test deploy
© B-Almalinux8 o ® 0-compare & @ Alpine-tarball (4] @ pages:deploy
@ B-Debian'l c @ R-Debian12 c @ ArchLinux-tarball c
B-Debian12 o R-Guix o Debian10Guile2.2Autoreconf- /~
° ° o tarball &
© B-Debian3 < © R-Ubuntu2404 7 ® DebiantiGuile2.2-tarball (5
@ B-Dean < K9 S-Treguello & © Debiani2Guile2.2-tarball G)
© B-Devuané < © s-Ubuntu2004 < ® Fedora3sClang-tarball o
© B-cux = @ Trisquel-tarball o
© B-Pureosto s @ TrisquelliCross-tarball c
© B-RockyLinux8 < @ Ubuntu20.04Guile2.2Clang-
tarball =
® @ B-Trisquel10 [s]
Ubuntu22.04Guile2.2Clang- /'~
2 / 16 ° tarball s
el @ B-Trisauelll c

Inspiration
From: Ludovic Courtes

Subject: Building a Docker image for GitLab-CI
Date: Tue, 13 Feb 2024 11:31:28 +0100

Hello Guix!

Has anyone succeeded in building a Docker image suitable for use in
GitLab-CI? I haven’t. Here’s what I tried.

Initially, I built an image with ‘guix system image -t docker ..” but
that doesn’t work because then the image’s “entry point” is shepherd,
but shepherd never returns. Thus, GitLab-CI would spawn the image and
eventually time out.

So I tried this instead:
guix pack guix bash-minimal coreutils-minimal grep net-base \
--save-provenance -S /bin=bin -S /share=share -S /etc=etc \
-f docker --max-layers=100

3/16

Declaring v1.0

From: Simon Josefsson
Subject: Re: Building a Docker image for GitLab-CI
Date: Wed, 25 Dec 2024 21:38:14 +0100

All,

Here are some updates about Guix container images for GitLab pipelines
or local podman usage. I'm declaring this v1.0.

tl;dr: https://gitlab.com/debdistutils/guix/container

Final images are built from a pure Guix container now. Everything 1is
done on public shared GitLab runners in the pipeline, no contailner
uploads. Stage0@ creates Debian+Guix that builds a pure Guix stagel
which builds the final Stage2 images. The content of these images
appears to be reproducible, but alas the docker images itself aren't:
https://issues.guix.gnhu.org/75090

4/16

https://gitlab.com/debdistutils/guix/container
https://issues.guix.gnu.org/75090

One year of use

* During 2025, the Guix Container Images was integrated into
GitLab CI/CD Pipelines for Libidn, Libidn2, OATH Toolkit,
Libtasnl, GNU SASL, InetUtils, Libntim, Guile-GnuTLS, etc

Y

One year of use

* During 2025, the Guix Container Images was integrated into
GitLab CI/CD Pipelines for Libidn, Libidn2, OATH Toolkit,
Libtasnl, GNU SASL, InetUtils, Libntlm, Guile-GnuTLS, etc

* The "make dist’ tarballs used for releases are bit-by-bit identical
and reproducible with tarballs built on GitLab.com from source

6/16

One year of use

* During 2025, the Guix Container Images was integrated into
GitLab CI/CD Pipelines for Libidn, Libidn2, OATH Toolkit,
Libtasnl, GNU SASL, InetUtils, Libntlm, Guile-GnuTLS, etc

* The "make dist’ tarballs used for releases are bit-by-bit identical
and reproducible with tarballs built on GitLab.com from source

* Guix was dropped from Debian breaking my setup — using“saved
non-rebuildable containers like the cool kids continueditowork

7116

Initial GitLab Build Design

* Initial design overly complex:

- StageO: Install Guix in a Debian container, save container
- Stagel: Build a pure Guix container using previous container
- Stage?2: Build another pure Guix container using previous container

* | thought I could get to reproducibility this way

8/16

New Design

* New design - https://gitlab.com/debdistutils/guix/container

* Realized the Debian+Guix containers had standalone use
* https://hub.docker.com/r/jas4711/debian-with-guix

* For reproducibility testing, having two "similar’ containers with
Guix helps

- Trisquel and Ubuntu with Guix
- https://hub.docker.com/r/jas4711/guix-on-dpkg

* Take upstream container and ./guix-install.sh && guix pull and
upload resulting container into a registry

9/16

https://gitlab.com/debdistutils/guix/container
https://hub.docker.com/r/jas4711/debian-with-guix
https://hub.docker.com/r/jas4711/guix-on-dpkg

New Design

* Stagel: Use Debian+Guix to create pure Guix container

- pack=%(guix pack $GUIX_ PACKS --save-provenance -S /bin=bin -S /share=share -f
docker --image-tag=guix —max-layers=8)

- skopeo --insecure-policy copy --additional-tag $CI_ REGISTRY _IMAGE:
$CI_JOB_NAME docker-archive://$pack docker://$Cl_REGISTRY_IMAGE:

$CI_JOB_NAME
* StageZ2: Use Trisquel/Ubuntu container to reproduce it

* Test & Deploy to GitLab registry and Docker Hub

- Amd64, arm64, ppc64el supported — riscv64 exists but not published
(no QEMU builds, using real hardware)

10/ 16

How to Use - interactively

$ podman run -it -entrypoint=/bin/sh docker.io/jas4711/guix: latest
sh-5.1# guix describe
guix 2d4ed08
repository URL: https://git.guix.gnhu.org/guix.git
branch: master
commit: 2d4ed08662714ead46cfe@b4lcalo5dlef845fdib
sh-5.1# exit

11/16

.gitlab-ci.yml

test-amd64-latest-wget-configure-make-libksba:
image: registry.gitlab.com/debdistutils/guix/container:latest
before_script:

groupadd --gid 0 root

useradd --uid O --gid root --shell /bin/sh --home-dir / --system root

cp -rL /gnu/store/*profile/etc/* /etc/

groupadd --system guixbuild

for 1 in $(seq -w 1 10); do useradd -g guixbuild -G guixbuild -d /var/empty

-s $(command -v nologin) -c "Guix build user $1i" --system guixbuilder$i; done

export HOME=/
env LANG=C.UTF-8 guix-daemon --build-users-group=guixbuild &
guix archive --authorize < /share/guix/ci.guix.gnu.org.pub
guix archive --authorize < /share/guix/bordeaux.guix.gnu.org.pub
guix describe
guix install libgpg-error
GUIX_PROFILE="//.guix-profile"
"$GUIX_PROFILE/etc/profile"

script:

wget https://www.gnupg.org/ftp/gcrypt/libksba/libksba-1.6.7.tar.bz2
tar xfa libksba-1.6.7.tar.bz2

cd libksba-1.6.7

./configure

make V=1

makegCheck VERBOSE=t V=1

sendmail.mc deja vu

- groupadd --gid O root

- useradd --uid O --gid root --shell /bin/sh --home-dir / --system root
- cp -rL /gnu/store/*profile/etc/* /etc/

- groupadd --system guixbuild

- foriin $(seq -w 1 10); do useradd -g guixbuild -G guixbuild -d /var/empty -s $
(command -v nologin) -c "Guix build user $i" --system guixbuilder$i; done

- export HOME=/

- env LANG=C.UTF-8 guix-daemon --build-users-group=guixbuild &
- guix archive --authorize < /share/guix/ci.guix.gnu.org.pub

- guix archive --authorize < /share/guix/bordeaux.guix.gnu.org.pul

13/ 16

14/ 16

Hide things or not?

How come everything you do has already been done before?
MetaCall Guix produce Guix containers on GitHub since 2019

Uses a custom script as container entry-point:
- https://github.com/metacall/guix/blob/master/scripts/entry-point.sh

Good inspiration for my effort — would be useful to compare
goals and design in detall

https://github.com/metacall/guix/blob/master/scripts/entry-point.sh

What to use Guix containers for? Reproducible tarballs!

* Define two GitLab CI/CD jobs that builds your
project and run 'make dist’

* Define another GitLab CI/CD job that run
sha256sum on both artifacts and compare

* Fail pipeline Iif artifacts mismatch

15/ 16

16/ 16

What to use Guix containers for? Reproduce tarballs!

Just because tarballs were reproducible at release time does
not mean they can be reproduced later on

Normally this is not the case... timestamps with day or month

Using the Guix time-machine inside a Guix container allows
you to confirm reproducibility of old tarballs continously

https://gitlab.com/debdistutils/verify-reproducible-releases
Thank you Guix time machine!

https://gitlab.com/debdistutils/verify-reproducible-releases

Security vs Let me do what | want

e Guix’s guix-daemon can be run root-less now!
* EXcept not on GitLab shared runners — no user namespaces

 [ronically the root-less guix-daemon requires use of —cap-
add=CAP_SYS ADMIN,CAP_NET_ ADMIN and/or —disable-
chroot and/or --security-opt seccomp=unconfined and/or
privileged=true runners depending on platform

* Regression compared to Guix v1.4.0
* https://codeberg.org/guix/guix/issues/3917

17/ 16 oops please allocate CVE

https://codeberg.org/guix/guix/issues/3917

Thank You!

Questions?

P

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

