

How I Turned a **Raspberry Pi** into an Open-Source Edge Cloud

Pablo del Arco

Cloud-Edge Innovation Engineer @ OpenNebula Systems

OpenNebula.io

Hello, FOSDEM!

Pablo del Arco | Cloud-Edge Innovation Engineer at OpenNebula Systems

Pablo del Arco

Cloud-Edge Innovation Engineer
@ OpenNebula Systems

→ My Journey

- ◆ Spain 🇪🇸: Born in Murcia, now based in **Valencia** ☀️
- ◆ France 🇫🇷: MSc @ **EURECOM**, Sophia Antipolis 🌴
- ◆ Finland 🇫🇮: MSc @ **Aalto University**, Helsinki ❄️

→ Main Focus

- ◆ Cloud computing
- ◆ Internet of Things
- ◆ **Homelab** (K8s cluster 🛠️)
- ◆ I write **tech blog posts** in **Medium!**

→ Current focus

- ◆ I develop **new features** and **applications** for OpenNebula as part of the **Innovation** Unit.

Follow me!

Table of Contents

1

What is OpenNebula?

Open... What?

2

Raspberry Pi + OpenNebula

The perfect couple ❤️

3

Live Demo 🎬: Let's see it in action!

Show me those VMs at the Edge

4

Real-World Use Cases

More than just a Homelab

5

Key Takeaways

Wrap-up

1

What is OpenNebula?

OpenNebula: Open-Source Cloud Platform

The **open source platform** for the cloud-edge continuum

OpenNebula is an open-source cloud management platform that unifies **VMs, containers, and Kubernetes** under a **single pane of glass**. From data centers to edge nodes, it orchestrates workloads across the entire cloud-edge continuum.

Multi-Hypervisor

KVM & LXC containers

Hybrid & Multi-Cloud

Integration with AWS, **Scaleway**, **OVH cloud**, and more!

ARM64 Native

Full support since v7.0

Kubernetes Ready

Cluster API, OneKE, RKE2

AI-ready platform

OneDRS + MCP integration

Enterprise Features

Multi-tenancy, federation, HA

Why OpenNebula for Edge Computing?

Feature / Platform	OpenNebula 7.0	Proxmox	VMware / CloudStack
ARM Support	Yes (Native)	Unofficial / Experimental	No (x86 only)
Marketplace ARM Images	Yes (Native)	No official ARM templates	No
Installation Simplicity	Simple (MiniONE/OneDeploy)	Complex / Unsupported	Unsupported on ARM
Resource Efficiency	Very High	High (x86 only)	Low (x86 only)
Edge / IoT Use Cases	Native Support	Limited	Not designed for Edge

OpenNebula leads in ARM and edge deployments – the clear choice for edge computing and IoT.

Why OpenNebula for Edge Computing?

Feature / Platform	OpenNebula 7.0	Proxmox
ARM Support	Yes (Native)	Unofficial / Experimental
Marketplace ARM Images	Yes (Native)	No official ARM templates
Installation Simplicity	Simple (MiniONE/OneDeploy)	Complex / Unsupported
Resource Efficiency	Very High	High (x86 only)
Edge / IoT Use Cases	Native Support	Limited

OpenNebula leads in ARM and edge deployments – the clear choice for edge computing and IoT.

ARM64 vs x86 Architecture Shift

Market Transition and Future Outlook in Edge Computing

2024 BASE

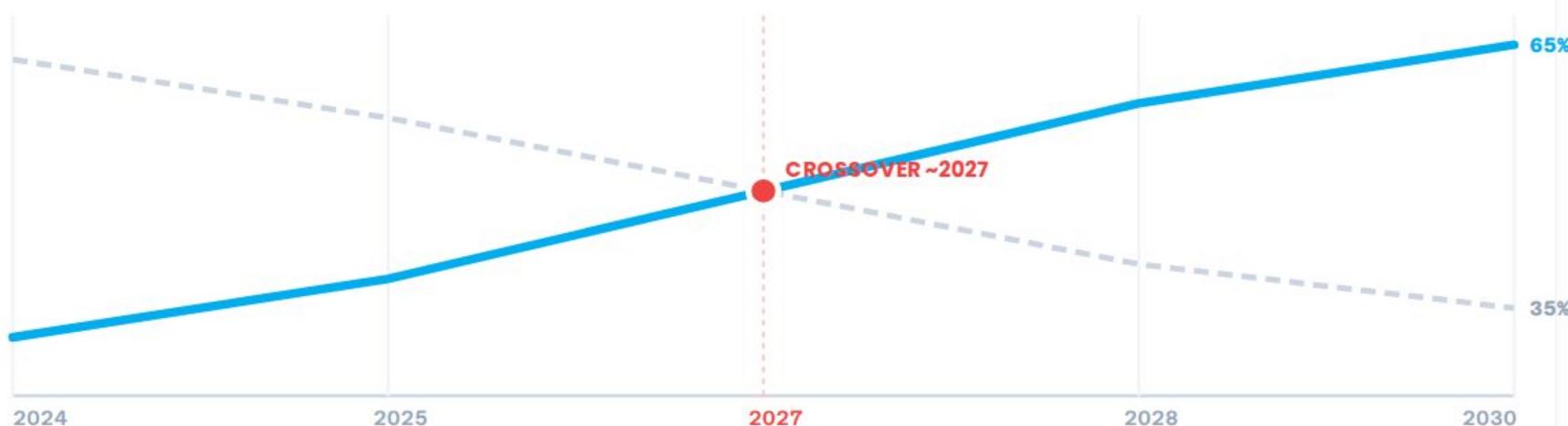
18% ARM64

Initial penetration in edge deployments.

2025 SURGE

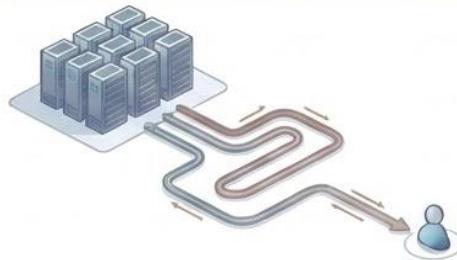
+70% YoY

Growth in ARMv9 server shipments.


2030 TARGET

65% Share

Projected dominant edge architecture.


Edge Deployment Architecture Share (%)

ARM64 x86 Legacy

The **Challenge** of Traditional Clouds

Traditional Clouds

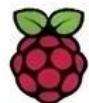
- Far from data is generated
- Latency-sensitive apps **suffer**
- **Bandwidth costs** for data transfer

Edge Computing Needs

- Process data **locally**
- Sub-millisecond response times
- **Work offline** or with limited connectivity

The Gap

- Enterprise platforms **too heavy**
- DIY solutions **lack features**
- **ARM support** historically poor


What if you could run an **enterprise-grade cloud on a \$50 device?**
With [OpenNebula 7.0](#) and native [ARM64](#) support, now you can.

2

Raspberry Pi + OpenNebula

Raspberry Pi + OpenNebula: It's a match!

Raspberry Pi meets OpenNebula

Hardware

 Device: Raspberry Pi 5 (BCM2712)

 RAM: 4GB / 8GB Recommended

 Storage: NVMe SSD (PCIe) preferred

 Network: Gigabit Ethernet / PoE+

 Cost: 50€ - 100€ (8GB)

Software Stack

 OS: Ubuntu Server 24.04 LTS

 Hypervisor: KVM with ARM

 Platform: OpenNebula 7.0 "Phoenix"

 Web UI: FireEdge Sunstone

 Marketplace: Pre-built ARM64 Appliances

Two deployment paths:

MiniONE – Quick single-command setup for testing & development

OneDeploy – Ansible-based IaC for production deployments

Option 1: MiniONE

From zero to cloud in less than 2 minutes

MiniONE is a **single-script installer** designed to deploy a full **OpenNebula** stack on a single machine. Optimized for Edge nodes, labs, and PoC environments.

1

Flash Ubuntu

Flash Ubuntu Server 24.04 LTS (**ARM64**) to your microSD or SSD.

2

Update System

Ensure the **local package** is updated.

3

Execute the MiniONE script

Download and run the MiniONE script with default or custom parameters.

● ● ● BASH – DEPLOY-CLOUD.SH

```
$ sudo apt update && sudo apt upgrade -y
$ wget \
  'https://github.com/OpenNebula/minione/
  releases/latest/download/minione'
$ chmod +x minione
$ sudo ./minione
# Initializing OpenNebula "Phoenix" 7.0 ...
```

✓ After ~90 seconds: Full OpenNebula cloud with Sunstone UI, Alpine VM template, and KVM hypervisor!

Option 2: OneDeploy

Infrastructure as Code for production edge deployments

OneDeploy is a **set of Ansible playbooks** for automated, repeatable deployments. Ideal for multi-node clusters and production environments.

When to Use OneDeploy

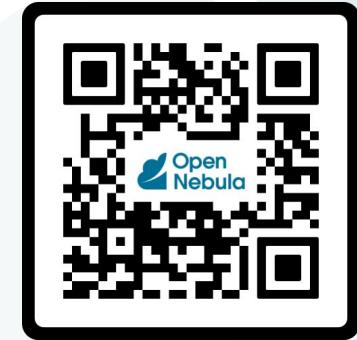
- ✓ Multi-node ARM64 edge clusters
- ✓ Production-ready deployments
- ✓ Repeatable infrastructure setup
- ✓ Custom network/storage configs
- ✓ High-availability requirements

What It Configures

- ⚙️ Control plane + orchestration APIs
- ⚙️ Web UI with HTTPS (Sunstone)
- ⚙️ KVM hypervisor nodes
- ⚙️ Virtual Network: Bridge, VXLAN, EVPN
- ⚙️ Storage: Local, Shared, Ceph

● ● ● BASH – ONE-DEPLOY

```
$ git clone https://github.com/OpenNebula/one-deploy && cd one-deploy
$ make requirements && hatch shell
$ ansible-playbook -i inventory.yml opennebula.deploy.main
```


Community Marketplace: x86 and ARM64

OpenNebula
Community Marketplace

Light Take me to OpenNebula documentation

 Nextcloud All-in-One Nextcloud All-in-One with VNC access and SSH key auth nextcloud-aio docker opensuse container vnc	 NixOS NixOS 25.05 nixos	 Open5GS ONEedge5G Open5GS 5G Core Network implementation for 5G SA deployments with WebUI management 5g core-network open5gs sa oneedge5g
HYPERSIMOR KVM VERSION 1.0.0-2 CREATED 17 Dec 2025	HYPERSIMOR ALL VERSION 25.05.80329710d7f8d34e5e-20250609 CREATED 09 Jun 2025	HYPERSIMOR kvm VERSION 1.0 CREATED 18 Jul 2025
 Phoenix RTOS Phoenix RTOS with VNC access and SSH key auth phoenixrtos docker ubuntu container vnc	 RabbitMQ Appliance with preinstalled RabbitMQ for KVM hosts rabbitmq ubuntu service	 srsRAN ONEedge5G Appliance running srsRAN Project 5G software radio suite developed within ONEedge5G project srsran 5g oran service oneedge5g
HYPERSIMOR KVM VERSION 1.0.0-1 CREATED 27 Sep 2025	HYPERSIMOR KVM VERSION 6.10.0-3-20250331 CREATED 31 Mar 2025	HYPERSIMOR KVM VERSION 1.0 CREATED 18 Jul 2025

Scan Me

But how can **you** create a custom appliance?

CLI-Based Wizard

A streamlined, **interactive command-line** interface that guides you **step by step** in the process..

Docker Integration

Easily convert **Docker-based images** into **production-ready KVM Virtual Machines** with persistent storage.

LXC System Containers

Deploy lightweight **LXC Alpine-based appliances** with pre-configured services like **MQTT**, **Node-RED**, and **PostgreSQL**.

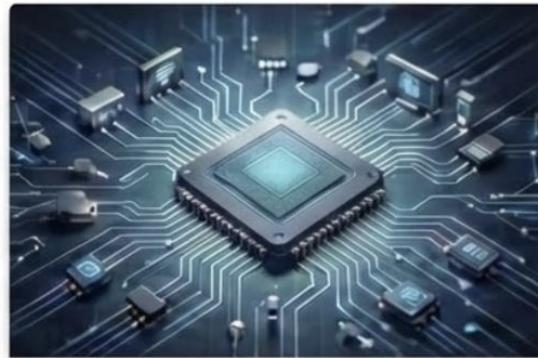
Multi-Arch Support

Full compatibility across both **x86** and **ARM** architectures for versatile edge deployment.

3

Live Demo : Wizard & UI

4


Real-World Use Cases

Real-World Use Cases

Homelab & Hosting

- Personal **private cloud** environment
- Self-hosted services (Nextcloud, GitLab)
- Home automation hub

IoT & Edge Computing

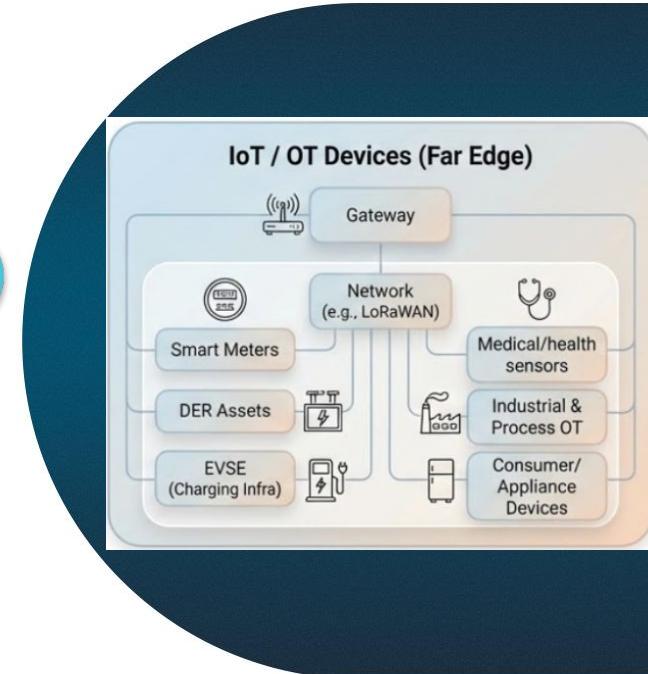
- **Real-time** sensor data processing
- Distributed edge nodes
- Industrial automation

Education & Research

- **Edge computing labs**
- Affordable virtual lab environments
- Academic research testbeds

Far-Edge & IoT: The O-CEI Model

O-CEI is an EU-funded Horizon Europe project to orchestrate the **Cloud-Edge-IoT continuum**. It uses a **Blueprint-Driven Methodology** to translate high-level requirements into repeatable **technical deployments** across **8 different pilots**, such as electricity grids, agrifood or logistics, with **high technical maturity (TRL 7)**.



- **Practical Extension**

In O-CEI, we have successfully extended the framework by adding a **Far-Edge / IoT** layer specifically to manage small, low-power devices and sensors at the industrial ground level.

- **Our Proposal for IPCEI v3.0**

We propose exploring the addition of this same layer to the **next ICRA version** to finally **connect** everything from the **Data Center** down to the **individual IoT device or sensor**.

5

Key Takeaways

- **Edge computing is accessible:** Enterprise cloud is now affordable; a Raspberry Pi can run full orchestration software.
- **Native ARM64:** OpenNebula 7.0 removes the "heavy platform" barrier for edge computing.
- **Flexible Implementation:** Use *MiniONE* for rapid PoCs or *OneDeploy* for production clusters.
- **Unified Experience:** Maintain the same *Sunstone UI* and features from data center to edge.

Let's connect!

 OpenNebula

Medium

LinkedIn

GitHub

Thank You!

OpenNebula.io

AI Plumbers :

[OneAI: An Open-Source Framework for Managing AI Models at Scale.](#)

Network :

[Building an Open Source Private 5G Network: A Practical Blueprint.](#)

Virtualization & Cloud Infrastructure :

[How I Turned a Raspberry Pi into an Open-Source Edge Cloud with OpenNebula.](#)

[Arming Cloud Computing Continuum: Hunting vulnerabilities in open source hybrid clouds.](#)

Find our Booth in LEVEL 1 of BUILDING K

> OpenNebula.io/IPCEI-CIS

IPCEI-CIS

Next-Generation European Platform for the Datacenter-Cloud-Edge Continuum

Initiative supported by the Spanish Ministry for Digital Transformation and Civil Service through the **ONEnextgen Project: Next-Generation European Platform for the Datacenter-Cloud-Edge Continuum** (UNICO IPCEI-2023-003) and co-funded by the European Union's NextGenerationEU instrument through the Recovery and Resilience Facility (RRF).

