FOSDEM2¢

HPC, Big Data
& Data Science

Jsing Open
iIntferop tor callil
GPU-vendor libs
with GCC

Tobias Burnus 1

About Me

Contributor to the OpenMP specification

Conftributor to GCC related to
GPU offloading, OpenMP, Fortran, ...
(+ co-maintainer/reviewer)

Background in numerical/computational
physics (time-dependent density-functional
theory, then related to transition-metal
oxides). Contribution to GCC'’s gfortran
started back then.

tburnus@baylibre.com

y
&

& (‘JBaylibre

Doing contract work related to
— open-source compilers, linker, debugger, ...
— Linux kernel, Zephyr, Android, Yocto, ...

with staff and customers on three continents

Saa &

baylibre.com/blog/

<

@) sourceware.org

mailto:tburnus@baylibre.com
https://baylibre.com/blog/

@ GCC — OpenMP and Offloading

Support for OpenMP and OpenACC

Most OpenMP 5.2 features
(but no OMPT and OMPD, yet)

gcc.gnu.org/projects/gomp/
gcc.gnu.org/onlinedocs/libgomp/
Offloading to Nvidia and AMD GPUs
gcc.gnu.org/wiki/Offloading

For build + install infos; Linux distro ship
Offload support in optional packages.

Use GCC 15 (released April 2025),
gcc.gnu.org/gcc-15/

GCC 16 (April 20262)
gcc.gnu.org/gcc-16/changes.html

OpenMP interop
e Since GCC 15 [CUDA, HIP, HSA] with most
OpenMP 6.0 additions (e.g. Fortran support)

WIP/near-term plan (a bit for 16, most GCC 17)
e Reduce missing bits for OpenMP 5.x + bug fixes
e Offload-performance improvements
e OMPT

And minor 6.x additions

Conftributors welcome — code, documentation, bug
reports
GSoC 2026 2

Acknowledgement: This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC05-000R22725

https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/onlinedocs/libgomp/
https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/gcc-15/
https://gcc.gnu.org/gcc-16/changes.html

interop — Starting Point

e Existing code - possibly with OpenMP
for host and/or GPU parallelization

e System with a GPU

e Hot code using FFT, (sparse)BLAS,
LAPACK, random-number generation

— To be calculated by vendor lib
on the GPU

OpenMIP

OpenMP’s interop + variant functions:
e Make it easier to hide some complexity
while coding

e Improve portability a bit

e Permit dependency handling of
OpenMP code vs. vendor-lib code

Vendor Lib Call Example

Example: CUDA call for Y =a X + Y [scalar times vector + vector; BLAS' DaXpY]

// Alloc device mem + copy data
3 cudaMalloc ((void**) &d_X, N * sizeof(*X));
4 cudaMemcpy (d_X, X, N * sizeof(*X), cudaMemcpyHostToDevice);

// Create streaming object and handle
5 cudaStreamCreate (&stream);
6 cublasCreate (&handle);
7 cublasSetStream (handle, stream);

// Y = alpha * X +Y
8 cublasDaxpy (handle, N, &alpha, d_X, 1, d_Y, 1);

9 cublasDestroy (handle);
10 cudaStreamDestroy (stream);

// Copy Y - free X as no longer needed
11 cudaFree (d_X);
12 cudaMemcpy (Y, d_Y, N * sizeof(*X), cudaMemcpyDeviceToHost);
14 cudaFree (d_Y);
/

&

Vendor Lib Call Example

Example: CUDA call for Y =a X + Y [scalar times vector + vector; BLAS' DaXpY]

// Alloc device mem + copy data
3 cudaMalloc ((void**) &d_X, N * sizeof(*X));
4 cudaMemcpy (d_X, X, N * sizeof(*X), cudaMemcpyHostToDevice);

// Create streaming object and handle
5 cudaStreamCreate (&stream);

6 cublasCreate (&handle); First s’rep: Use OpenMP for
7 cublasSetStream (handle, stream); memory allocation, host-device transfer,

// Y = alpha * X + Y and on-device initialization
8 cublasDaxpy (handle, N, &alpha, d_X, 1, d_Y, 1);

9 cublasDestroy (handle); — reduce/localize vendor specific code.

10 cudaStreamDestroy (stream);

// Copy Y - free X as no longer needed
11 cudaFree (d_X);
12 cudaMemcpy (Y, d_Y, N * sizeof(*X), cudaMemcpyDeviceToHost);
14 cudaFree (d_Y);

y

&

Vendor Lib Call Example

OpenMP — memory handling (+ on-device var initialization)

// Initialize X + copy Y to the device
#pragma omp target enter data map(alloc: X[:N]) map(to:Y[:N])
#pragma omp target
for (size t i = 0; i < N; i++)
X[i] = 1.0;
// Get device ptr:
d_X = (double*) omp_get_mapped_ptr (X, omp_get_default_device());

cublasDaxpy (handle, N, &alpha, d_X, 1, d_Y, 1);

// Copy Y - free X as no longer needed
#tpragma omp target exit data map(release: X) map(from: Y[:N])

Vendor Lib Call Example

OpenMP — memory handling (+ on-device var initialization)

// Initialize X + copy Y to the device
#pragma omp target enter data map(alloc: X[:N]) map(to:Y[:N])
#pragma omp target
for (size t i = 0; i < N; i++)
X[i] = 1.0;
// Get device ptr:
d_X = (double*) omp_get_mapped_ptr (X, omp_get_default_device());

cublasDaxpy (handle, N, &alpha, d_X, 1, d_Y, 1);

// Copy Y - free X as no longer needed
#tpragma omp target exit data map(release: X) map(from: Y[:N])

&

Variants:

e Use unified shared memory

® omp_target_alloc
use directly or associate with host
variable

e OpenMP allocators
pinned, device-accessible,
managed memory, ...

OpenMP—CUDA device number via interop

Previous slides: assumption they are the same. Proper way + interop intro

1 omp_interop_t obj;

2 #pragma omp interop init(target, prefer_type("cuda"™) : obj) \
device(omp_get default_device())

// Check result: got an interop object - and for CUDA:

5 if (obj != omp_interop_none
6 && omp_ifr_cuda == omp_get_1interop_int (obj, omp_ipr_fr_id, nullptr))
{
7 int dev_num = omp_get_interop_int (obj, omp_ipr_device_num, nullptr);
// e.g. — 0@
9 char* str = omp_get_interop_str (obj, omp_ipr_fr_name, nullptr));

// — "cuda"

}

10 #pragma omp interop destroy(obj)

OpenMP—CUDA device number via interop

Previous code assume they are the same. Proper way + interop intro

omp_interop_t obj;

#tpragma omp interop init(target, prefer_type("cuda") : obj) \
device(omp_get default_device())

// Check result: got an interop object - and for CUDA:
if (obj != omp_interop_none
&& omp_ifr_cuda == omp_get_1interop_int (obj, omp_ipr_fr_id, nullptr))
{
int dev_num = omp_get_interop_int (obj, omp_ipr_device_num, nullptr);
// e.g. — 0@
char* str = omp_get_interop_str (obj, omp_ipr_fr_name, nullptr));
// — "cuda"
}

#tpragma omp interop destroy(obj)

Available foreign runtimes:
— depends on device/GPU + compiler

For GCC:
e Nvidia GPUs: cuda, cuda_driver, hip
e AMD GPUs: hip, hsa

— OpenMP.org for list + assoc data types

http://openmp.org

OpenMP— Streaming Object

cudaStreamCreate + cudaStreamDestroy — OpenMP interop (targetsync)

omp_interop_t obj;
#tpragma omp interop init(targetsync, prefer_type("cuda"): obj)
cudaStream_t stream = (cudaStream_t)

omp_get_interop_ptr (obj, omp_ipr_targetsync, nullptr);

cublasSetStream (handle, stream);

13 #pragma omp interop destroy(obj)

OpenMP— Streaming Object

cudaStreamCreate + cudaStreamDestroy — OpenMP interop (targetsync)

. . Joreign-runtime-ids data types

omp_interop_t obj; .

#pragma omp interop init(targetsync, prefer type("cuda"): obj) i | oeme targeteyne

cudaStream_t stream = (cudaStream_t) 1 | cuda cudaStream t

omp_get_interop_ptr (obj, omp_ipr_targetsync, nullptr); 2 | cuda_driver | CUstream

3 1 1

cublasSetStream (handle, stream); S i

4 | sycl cl::sycl: :queue

13 #pragma omp interop destroy(obj) 5 | hip hipStream t

6 | level_zero ze_command_queue_handle_t
7 | hsa hsa_queue_t *

Less library/compiler specific code — but also:
e Same device a OpenMP
e Dependency handling with asynchronous execution supported

/‘ — next page

Interop with ‘depend’ and ‘nowait’ | HIP + Fortran

#pragma omp target nowait depend (out: x[0:N]) map (from: x[0:N])
myVectorSet (N, 1.0, x);

#pragma omp task depend(out: y[0:N])

myVectorSet (N, -1.0, y); integer(omp_interop_kind) :: obj
integer(omp_interop_fr_kind) :: fr
#pragma omp interop init (targetsync: obj) \ type(c_ptr) :: hip_sm

depend (in: x[0:N]) \

depend (inout: y[0:N]) !$omp interop init(target, targetsync, prefer_type("hip"): obj)
o . .) fr = omp_get_interop_int (obj, omp_ipr_fr_id, res)
PmagnaonpRtinteropidestroy oy jinonsa LERN hip_sm = omp_get_interop_ptr (obj, omp_ipr_targetsync, res)
depend (out: y[0:N]) - i

!$omp interop destroy(obj)

#pragma omp target depend (inout: x[0:N])

myDscal (N, scalar, x);

#pragma omp taskwait

Full example with explanations: OpenMP Examples
document

/ o
\IJ www.openmp.org/specifications

https://www.openmp.org/specifications/

Variant Functions

bool use_variant = false;
void variant_fn (int n, int *A) { /* ... */ }
#tpragma omp declare variant(variant_fn) match(user={condition(use_variant)})
// #pragma omp declare variant(variant_fn) match(construct={parallel})
// #pragma omp declare variant(variant_fn) match(target_device={kind(gpu)})
void base_fn (int n, int *A) { /* ... */ }
void test() {
base_fn (n, arr); // Calls base function

use_variant = true;
base_fn (n, arr); // Calls variant function ‘variant_fn’

}

(‘

5

Variant Function for Device Variant

Assume base function:

void daxpy (int n, double *da, double *dx, int incx, double *dx, int incy);

And device wrapper function —issues: device hard coded, device-ptr assumptions

void device_daxpy (int n, double *da, double *dx, int incx, double *dx, int incy) {
cudaStreamCreate (&stream)
cublasCreate (&handle)
cublasSetStream (handle, stream);
#pragma omp target data use_device_ptr(dx, dy)
cublasDaxpy (handle, n, da, dx, incx, dy, incy);
cublasDestroy (handle); cudaStreamDestroy (stream);

}

#tpragma omp declare variant(device_daxpy) match(...)
void daxpy (int n, double *da, double *dx, int incx, double *dx, int incy);

(‘

s

Variant Function for Device Variant

Autoconvert host—device pointer + create streaming object

void device_daxpy(int n, double *da, double *dx, int incx,
double *dx, int incy, omp_interop_t obj)

cudaStream_t stream = omp_get_interop_ptr (obj, omp_ipr_targetsync, nullptr);
cublasSetStream (handle, stream);
cublasDaxpy (handle, n, da, dx, incx, dy, incy);
cublasDestroy (handle);
}
#pragma omp declare variant(device_daxpy) adjust_args(need_device_ptr: dx, dy) \

append_args(interop(targetsync)) match(construct=ﬂdisgatchﬂ)
void daxpy (int n, double *da, double *dx, int incx, double *dx, int incy);

void test() { /* ... */
daxpy (N, &alpha, d X, 1, d_Y, 1); // Base function
#pragma omp dispatch device(my_dev) // Specify a device to use
// Variant function called with device ptr for dx/dy + ‘targetsync’ interop object

//" daxpy (N, &alpha, d_X, 1, d_vY, 1);
\bJ

Sneak preview:
Low-Overhead OpenMP

&

GPU kernel C_)penMP

Simple & automatically — vs. — explicit but faster
e CUDA + HIP (as language): Low-overhead + fast code

e OpenMP: Flexible, multiple design patterns, e.g. nested ‘parallel’
no need to specify number of teams, threads,
stateful (internal conftrol variables, ICV),

For hot code, faster code would be better - OpenMP 6.x ... —

y
&

OpenMP’s Kernel-Language-Like Features

CUDA/HIP OpenMP
e Team-private variables: _ SHARED e omp groupprivate(x) [OpenMP 6.0]
- for static vars e omp target dyn_groupprivate(size)

— with size specified at kernel-launch time + omp_get_dyn_groupprivate_ptr()

dim3 nblocks(N/256, N/256, N/256);
dim3 nthreads(256, 256, 256);
kernel<<<nblocks, nthreads>>>(...)
— aneh—

int x = blockIdx.x * blockDim.x +
threadIdx. x;

By construction: low launch overhead

[TR14 — OpenMP 6.1]

[WIP, 6.1?] omp target teams
num_teams(dims(3):N/256,N/256,N/256)
—and —

int x = omp_get_team_num_dim(1) *
omp_get num_teams_dim(1) + ...

[6.1/7?] optionally, disable features to
reduce launch/on-device overhead

Covered Topics @ OpenMP

o GCC's OpenMP / offload support
e interop - easier access to vendor libs

e OpenMP CUDA/HIP-like features (‘kernel language’)
More to the last two — SC25 booth/tech talk — link.openmp.org/sc25talks

] EMBEDDRR REQRES ke

° ° ° L = o by@&;m
Thanks for listening! — Questions, comments? i

Join the core developers and thought
leaders of open source software for =~ =7
Embedded Systems Ly
R o
e T 53 o S
Talhs, discussions, /{»Mﬁ /

Tobias Burnus <tburnus@baylibre.com>

y
&

http://link.openmp.org/sc25talks
mailto:tburnus@baylibre.com

Venture capital for opensource projects https://commit.fund/

We open-source, so does our partner >commit

> commit

By Red River West

>commit is a VC fund investing in early-stage Commercial Open-Source
Startups with European roots.

Companies backed by >commit & its team

Twenty Mastra White Circle Better-Auth

S [&) iP s F

Graphcore Pangolin Pyannote Pandas Al Stealth project

Disclaimer: BayLibre SAS is a Limited

Partner in the >commit fund Learn more at commit.fund

https://commit.fund/

