
Using OpenMP’s
interop for calling
GPU-vendor libs
with GCC
Tobias Burnus 1

HPC, Big Data
& Data Science

Contributor to the OpenMP specification

Contributor to GCC related to
GPU offloading, OpenMP, Fortran, …
(+ co-maintainer/reviewer)

Background in numerical/computational
physics (time-dependent density-functional
theory, then related to transition-metal
oxides). Contribution to GCC’s gfortran
started back then.

tburnus@baylibre.com

About Me &
Doing contract work related to
– open-source compilers, linker, debugger, …
– Linux kernel, Zephyr, Android, Yocto, …
with staff and customers on three continents

baylibre.com/blog/

2

mailto:tburnus@baylibre.com
https://baylibre.com/blog/

 GCC — OpenMP and Offloading
● Support for OpenMP and OpenACC
● Most OpenMP 5.2 features

(but no OMPT and OMPD, yet)
gcc.gnu.org/projects/gomp/
gcc.gnu.org/onlinedocs/libgomp/

● Offloading to Nvidia and AMD GPUs
gcc.gnu.org/wiki/Offloading
For build + install infos; Linux distro ship
Offload support in optional packages.

● Use GCC 15 (released April 2025),
gcc.gnu.org/gcc-15/

● GCC 16 (April 2026?)
gcc.gnu.org/gcc-16/changes.html

OpenMP interop
● Since GCC 15 [CUDA, HIP, HSA] with most

OpenMP 6.0 additions (e.g. Fortran support)

WIP/near-term plan (a bit for 16, most GCC 17)
● Reduce missing bits for OpenMP 5.x + bug fixes
● Offload-performance improvements
● OMPT

And minor 6.x additions

Contributors welcome – code, documentation, bug
reports
GSoC 2026 ?

Acknowledgement: This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725

https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/onlinedocs/libgomp/
https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/gcc-15/
https://gcc.gnu.org/gcc-16/changes.html

interop – Starting Point
● Existing code – possibly with OpenMP

for host and/or GPU parallelization

● System with a GPU

● Hot code using FFT, (sparse)BLAS,
LAPACK, random-number generation

→ To be calculated by vendor lib
on the GPU

OpenMP’s interop + variant functions:
● Make it easier to hide some complexity

while coding

● Improve portability a bit

● Permit dependency handling of
OpenMP code vs. vendor-lib code

Vendor Lib Call Example
Example: CUDA call for Y = 𝛼 X + Y [scalar times vector + vector; BLAS’ DaXpY]

 // Alloc device mem + copy data
 3 cudaMalloc ((void**) &d_X, N * sizeof(*X));
 4 cudaMemcpy (d_X, X, N * sizeof(*X), cudaMemcpyHostToDevice);
 …
 // Create streaming object and handle
 5 cudaStreamCreate (&stream);
 6 cublasCreate (&handle);
 7 cublasSetStream (handle, stream);

 // Y = alpha * X + Y
 8 cublasDaxpy (handle, N, &alpha, d_X, 1, d_Y, 1);

 9 cublasDestroy (handle);
10 cudaStreamDestroy (stream);

 // Copy Y - free X as no longer needed
11 cudaFree (d_X);
12 cudaMemcpy (Y, d_Y, N * sizeof(*X), cudaMemcpyDeviceToHost);
14 cudaFree (d_Y);

Vendor Lib Call Example
Example: CUDA call for Y = 𝛼 X + Y [scalar times vector + vector; BLAS’ DaXpY]

First step: Use OpenMP for
memory allocation, host-device transfer,
and on-device initialization

→ reduce/localize vendor specific code.

 // Alloc device mem + copy data
 3 cudaMalloc ((void**) &d_X, N * sizeof(*X));
 4 cudaMemcpy (d_X, X, N * sizeof(*X), cudaMemcpyHostToDevice);
 …
 // Create streaming object and handle
 5 cudaStreamCreate (&stream);
 6 cublasCreate (&handle);
 7 cublasSetStream (handle, stream);

 // Y = alpha * X + Y
 8 cublasDaxpy (handle, N, &alpha, d_X, 1, d_Y, 1);

 9 cublasDestroy (handle);
10 cudaStreamDestroy (stream);

 // Copy Y - free X as no longer needed
11 cudaFree (d_X);
12 cudaMemcpy (Y, d_Y, N * sizeof(*X), cudaMemcpyDeviceToHost);
14 cudaFree (d_Y);

Vendor Lib Call Example
OpenMP – memory handling (+ on-device var initialization)

 // Initialize X + copy Y to the device
 #pragma omp target enter data map(alloc: X[:N]) map(to:Y[:N])
 #pragma omp target
 for (size_t i = 0; i < N; i++)
 X[i] = 1.0;
 // Get device ptr:
 d_X = (double*) omp_get_mapped_ptr (X, omp_get_default_device());
 …
 cublasDaxpy (handle, N, &alpha, d_X, 1, d_Y, 1);
 …

 // Copy Y - free X as no longer needed
 #pragma omp target exit data map(release: X) map(from: Y[:N])

Vendor Lib Call Example
OpenMP – memory handling (+ on-device var initialization)

 // Initialize X + copy Y to the device
 #pragma omp target enter data map(alloc: X[:N]) map(to:Y[:N])
 #pragma omp target
 for (size_t i = 0; i < N; i++)
 X[i] = 1.0;
 // Get device ptr:
 d_X = (double*) omp_get_mapped_ptr (X, omp_get_default_device());
 …
 cublasDaxpy (handle, N, &alpha, d_X, 1, d_Y, 1);
 …

 // Copy Y - free X as no longer needed
 #pragma omp target exit data map(release: X) map(from: Y[:N])

Variants:
● Use unified shared memory
● omp_target_alloc

use directly or associate with host
variable

● OpenMP allocators
pinned, device-accessible,
managed memory, …

OpenMP→CUDA device number via interop
Previous slides: assumption they are the same. Proper way + interop intro

 1 omp_interop_t obj;

 2 #pragma omp interop init(target, prefer_type("cuda") : obj) \
 device(omp_get_default_device())

 // Check result: got an interop object – and for CUDA:
 5 if (obj != omp_interop_none
 6 && omp_ifr_cuda == omp_get_interop_int (obj, omp_ipr_fr_id, nullptr))
 {
 7 int dev_num = omp_get_interop_int (obj, omp_ipr_device_num, nullptr);
 // e.g. → 0
 9 char* str = omp_get_interop_str (obj, omp_ipr_fr_name, nullptr));
 // → "cuda"
 }

10 #pragma omp interop destroy(obj)

 1 omp_interop_t obj;

 2 #pragma omp interop init(target, prefer_type("cuda") : obj) \
 device(omp_get_default_device())

 // Check result: got an interop object – and for CUDA:
 5 if (obj != omp_interop_none
 6 && omp_ifr_cuda == omp_get_interop_int (obj, omp_ipr_fr_id, nullptr))
 {
 7 int dev_num = omp_get_interop_int (obj, omp_ipr_device_num, nullptr);
 // e.g. → 0
 9 char* str = omp_get_interop_str (obj, omp_ipr_fr_name, nullptr));
 // → "cuda"
 }

10 #pragma omp interop destroy(obj)

OpenMP→CUDA device number via interop
Previous code assume they are the same. Proper way + interop intro

Available foreign runtimes:
→ depends on device/GPU + compiler

For GCC:
● Nvidia GPUs: cuda, cuda_driver, hip
● AMD GPUs: hip, hsa

→ OpenMP.org for list + assoc data types

http://openmp.org

OpenMP→ Streaming Object
cudaStreamCreate + cudaStreamDestroy → OpenMP interop (targetsync)

 omp_interop_t obj;
 #pragma omp interop init(targetsync, prefer_type("cuda"): obj)
 cudaStream_t stream = (cudaStream_t)
 omp_get_interop_ptr (obj, omp_ipr_targetsync, nullptr);
 …
 cublasSetStream (handle, stream);
 …
13 #pragma omp interop destroy(obj)

OpenMP→ Streaming Object
cudaStreamCreate + cudaStreamDestroy → OpenMP interop (targetsync)

 omp_interop_t obj;
 #pragma omp interop init(targetsync, prefer_type("cuda"): obj)
 cudaStream_t stream = (cudaStream_t)
 omp_get_interop_ptr (obj, omp_ipr_targetsync, nullptr);
 …
 cublasSetStream (handle, stream);
 …
13 #pragma omp interop destroy(obj)

Less library/compiler specific code – but also:
● Same device a OpenMP
● Dependency handling with asynchronous execution supported

→ next page

Interop with ‘depend’ and ‘nowait’|HIP + Fortran
#pragma omp target nowait depend(out: x[0:N]) map(from: x[0:N])
 myVectorSet(N, 1.0, x);

#pragma omp task depend(out: y[0:N])
 myVectorSet(N, -1.0, y);

#pragma omp interop init(targetsync: obj) \
 depend(in: x[0:N]) \
 depend(inout: y[0:N])
...
#pragma omp interop destroy(obj) nowait \
 depend(out: y[0:N])

#pragma omp target depend(inout: x[0:N])
 myDscal(N, scalar, x);

#pragma omp taskwait

Full example with explanations: OpenMP Examples
document
www.openmp.org/specifications

integer(omp_interop_kind) :: obj
integer(omp_interop_fr_kind) :: fr
type(c_ptr) :: hip_sm

!$omp interop init(target, targetsync, prefer_type("hip"): obj)

fr = omp_get_interop_int (obj, omp_ipr_fr_id, res)
hip_sm = omp_get_interop_ptr (obj, omp_ipr_targetsync, res)
...
!$omp interop destroy(obj)

https://www.openmp.org/specifications/

Variant Functions
bool use_variant = false;

void variant_fn (int n, int *A) { /* … */ }

#pragma omp declare variant(variant_fn) match(user={condition(use_variant)})

// #pragma omp declare variant(variant_fn) match(construct={parallel})

// #pragma omp declare variant(variant_fn) match(target_device={kind(gpu)})

void base_fn (int n, int *A) { /* … */ }

void test() {

 …
 base_fn (n, arr); // Calls base function

 use_variant = true;

 base_fn (n, arr); // Calls variant function ‘variant_fn’

}

Variant Function for Device Variant
Assume base function:
void daxpy (int n, double *da, double *dx, int incx, double *dx, int incy);

And device wrapper function – issues: device hard coded, device-ptr assumptions

void device_daxpy (int n, double *da, double *dx, int incx, double *dx, int incy) {

 cudaStreamCreate (&stream)

 cublasCreate (&handle)

 cublasSetStream (handle, stream);

 #pragma omp target data use_device_ptr(dx, dy)

 cublasDaxpy (handle, n, da, dx, incx, dy, incy);

 cublasDestroy (handle); cudaStreamDestroy (stream);

}

#pragma omp declare variant(device_daxpy) match(...)

void daxpy (int n, double *da, double *dx, int incx, double *dx, int incy);

Variant Function for Device Variant

Autoconvert host→device pointer + create streaming object
void device_daxpy(int n, double *da, double *dx, int incx,

 double *dx, int incy, omp_interop_t obj)

{

 cudaStream_t stream = omp_get_interop_ptr (obj, omp_ipr_targetsync, nullptr);

 cublasSetStream (handle, stream);

 cublasDaxpy (handle, n, da, dx, incx, dy, incy);

 cublasDestroy (handle);

}

#pragma omp declare variant(device_daxpy) adjust_args(need_device_ptr: dx, dy) \

 append_args(interop(targetsync)) match(construct={dispatch})

void daxpy (int n, double *da, double *dx, int incx, double *dx, int incy);

void test() { /* ... */

 daxpy (N, &alpha, d_X, 1, d_Y, 1); // Base function

 #pragma omp dispatch device(my_dev) // Specify a device to use

 // Variant function called with device ptr for dx/dy + ‘targetsync’ interop object

 daxpy (N, &alpha, d_X, 1, d_Y, 1);

Sneak preview:
Low-Overhead OpenMP

GPU kernel
Simple & automatically — vs. — explicit but faster
● CUDA + HIP (as language): Low-overhead + fast code

● OpenMP: Flexible, multiple design patterns, e.g. nested ‘parallel’
no need to specify number of teams, threads,
stateful (internal control variables, ICV),

For hot code, faster code would be better → OpenMP 6.x … →

OpenMP’s Kernel-Language-Like Features
CUDA/HIP
● Team-private variables: __SHARED__

– for static vars
– with size specified at kernel-launch time

● dim3 nblocks(N/256, N/256, N/256);

dim3 nthreads(256, 256, 256);

kernel<<<nblocks, nthreads>>>(…)

— and —
int x = blockIdx.x * blockDim.x +

threadIdx.x;

● By construction: low launch overhead

OpenMP
● omp groupprivate(x) [OpenMP 6.0]
● omp target dyn_groupprivate(size)

+ omp_get_dyn_groupprivate_ptr()
[TR14 → OpenMP 6.1]

● [WIP, 6.1?] omp target teams
num_teams(dims(3):N/256,N/256,N/256)

— and —
int x = omp_get_team_num_dim(1) *

omp_get_num_teams_dim(1) + …

● [6.1/7?] optionally, disable features to
reduce launch/on-device overhead

Covered Topics
● GCC’s OpenMP / offload support
● interop – easier access to vendor libs
● OpenMP CUDA/HIP-like features (‘kernel language’)

More to the last two → SC25 booth/tech talk → link.openmp.org/sc25talks

Thanks for listening! — Questions, comments?

Tobias Burnus <tburnus@baylibre.com>

https://embedded-recipes.org/

http://link.openmp.org/sc25talks
mailto:tburnus@baylibre.com

Venture capital for opensource projects https://commit.fund/

https://commit.fund/

