
“Drop-in Replacement”:
Defining Compatibility for

Postgres and MySQL Derivatives

Jimmy Angelakos, Daniël van Eeden

FOSDEM 2026 Database Devroom

Who are we?

▶ Jimmy Angelakos

▶ Based in Edinburgh, Scotland

▶ Staff Software Engineer, pgEdge

▶ Open Source user & contributor (25+ years)

▶ PostgreSQL Significant Contributor

▶ Author, PostgreSQL Mistakes and How to Avoid Them

▶ pg statviz PostgreSQL extension

Who are we?

▶ Daniël van Eeden

▶ Working for PingCAP on TiDB

▶ Contributor to MySQL, go-mysql, Wireshark, . . .

▶ Awarded MySQL Rockstar in 2023

The landscape

The success of open source databases like PostgreSQL and
MySQL has created an ecosystem of derivatives claiming
“drop-in compatibility.”

▶ User confusion and brand dilution as derivatives diverge
from upstream

▶ Compatibility is not an absolute Yes/No situation

▶ Even different versions of the same database are not
100% compatible (deprecated & added features)

▶ What does “PostgreSQL compatible” or “MySQL compatible”
actually mean?

Defining compatibility

From a user perspective:

▶ Will my application work with this database?

▶ What database drivers and APIs can I use?

▶ Can I replicate from and to this database?

▶ Does a cloud DBaaS offering provide the same experience?

▶ Can I use an existing ecosystem of tools and drivers?

Two perspectives

The Standard: PostgreSQL Compatibility

The Implementation: MySQL Compatibility

PGConf.EU 2025 working group

▶ “Establishing the PostgreSQL Standard: What’s Postgres
compatible?” working session at PGConf.EU in Riga, Latvia
(Oct 2025)

▶ Goal: practical framework of criteria and tests for PostgreSQL
compatibility

▶ With PostgreSQL becoming “the new Linux” for the
enterprise, this is increasingly important

Why not just ISO SQL?

Why care about “PostgreSQL compatible” instead of simply
ISO/IEC SQL:2023?

The SQL standard doesn’t define:

▶ Implementation details like indexes and on-disk data formats

▶ Function names for features not yet standardized (vector
search, UUIDv7)

▶ Administrative commands

▶ Network protocol

The Riga consensus

Work has pivoted from a binary “Pass/Fail” certification to a
granular compatibility matrix.

▶ Weighted checklist (Core vs Optional), to avoid
stifling innovation

▶ “Managed” PG: Specific exceptions for managed
environments (restricted superuser, filesystem access)

▶ No silent failures: CREATE INDEX must actually
build the index, not just return “success”

Core SQL & feature set

Everything covered by Postgres documentation in
“Part II: SQL Commands” is required.

▶ Even rarely-used features must be supported

▶ Implicit behaviours: Undocumented behaviours users rely on
(e.g. INSERT ... ORDER BY)

▶ Data types: ARRAY, BYTEA, JSONB required

▶ Feature dependencies: Triggers imply full PL/pgSQL
language support

Protocol & behavioural compatibility

▶ Transaction isolation: Standard levels (Read Committed,
Repeatable Read, Serializable) with identical behaviour

▶ Error codes: Identical SQLSTATE codes for common errors

▶ System catalogs: pg catalog must be present and
predictable for monitoring tools

▶ Hard limits: Must generally match Postgres limits (e.g.
identifier length, max columns)

Connectivity & tools

▶ Server version string must satisfy standard tools (e.g. psql)
▶ Standard drivers (JDBC, Psycopg) must work without

modification

▶ Ability to pg dump import/export to/from PostgreSQL

▶ Execution plans need not be identical, but functional results
must match (e.g. partitions are pruned)

▶ Standard tools compatibility (Patroni, pg basebackup,
RepMgr)

Replication compatibility

Logical Replication:

▶ Bi-directional (Product X ↔ PostgreSQL)

▶ Observable via standard replication catalogs

▶ Vendor extensions must not break connection to vanilla
Postgres

Physical Replication:

▶ Physical copying of binary files (or equivalent)

▶ Hybrid clusters: mixing vanilla and vendor nodes

▶ Point-In-Time Recovery (PITR) and WAL access required

The test harness

▶ Test suite outside the PostgreSQL codebase

▶ Test suite versions correspond numerically to PG releases

▶ Vendors provide compatible build target

▶ Testing feature compliance, not bugs—fixing a Postgres bug
should not cause test failure

The Compatibility Illusion
mysql> INSERT INTO t1 VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)

mysql> PRAGMA table_list;
+--------+------+-------+------+----+
| schema | name | type | ncol | wr |
+--------+------+-------+------+----+
| main | t1 | table | 1 | 0 |
+--------+------+-------+------+----+
1 row in set (0.00 sec)

mysql> SELECT sqlite_version();
+------------------+
| sqlite_version() |
+------------------+
| 3.46.0 |
+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM generate_series(
’2025-02-01’::TIMESTAMP,
’2025-02-02’::TIMESTAMP,
’12 hour’);

+----------------------+
| generate_series |
+----------------------+
| 2025-02-01T00:00:00Z |
| 2025-02-01T12:00:00Z |
| 2025-02-02T00:00:00Z |
| 2025-02-02T12:00:00Z |
+----------------------+
4 rows in set (0.00 sec)

mysql> SELECT VERSION();
+----------------------------------+
| version |
+----------------------------------+
| PostgreSQL 17.2 (Debian 17.2-1.. |
+----------------------------------+
1 row in set (0.00 sec)

Compatible, no?

▶ Is this MySQL compatible? . . . well the protocol is.

▶ Is this PostgreSQL compatible? . . . well the syntax is.

▶ Examples created with go-mysql as MySQL protocol proxy
with SQLite and PostgreSQL backends.

▶ What if a cloud provider did something similar?

TiDB: Architecture

TiDB is:

▶ A MySQL compatible database

▶ Not based on or descending from MySQL code like MariaDB

▶ Written in Go
▶ Using TiKV (RocksDB) as storage layer, not InnoDB

▶ Accepts ENGINE=InnoDB but silently ignores it

▶ A distributed database

TiDB: Feature Compatibility

▶ Some features like Geospatial and VECTOR are seen as
optional

▶ XML: TiDB never implemented it—JSON has become more
popular

▶ Vector: MySQL has the datatype, but search only in Cloud

▶ TiDB adds useful MariaDB features (e.g. sequences)

▶ Should compatibility on its own be the target?

MariaDB

▶ Originally a true drop-in replacement for MySQL
▶ Stop MySQL, swap binaries, start—no import/export needed
▶ Over time, MySQL and MariaDB have diverged significantly

▶ MySQL sql mode: historically offered compatible syntax
modes for Oracle, PostgreSQL, and others

Wire protocol challenges

MySQL protocol v10 uses capability flags for feature negotiation
(compression, auth methods, etc.).

Architectural friction:

▶ Clients also use the announced version string for feature
detection

▶ MySQL Connector/J queries
information schema.keywords if version ≥ 8.0
▶ When TiDB changed to 8.0.11-TiDB-v7.5.3, we had to

implement this table

▶ TiDB forked MySQL Connector/J to support TiDB-specific
authentication

SQL Syntax & Type Friction

Reserved keywords: Vary significantly between database products
and versions.

EXPLAIN formats: MySQL supports multiple formats; TiDB uses
its own—distributed query plans look fundamentally different.

Type implementation divergence:

▶ MySQL = JSON type, MariaDB = TEXT + JSON VALID()
▶ MySQL = UUID TO BIN(), MariaDB = UUID type

Explain formats

mysql-8.4.7> EXPLAIN SELECT user FROM mysql.user WHERE host=’%’ AND user=’root’;
+----+-------------+-------+------------+-------+---------------+---------+---------+
| id | select_type | table | partitions | type | possible_keys | key | key_len |
+----+-------------+-------+------------+-------+---------------+---------+---------+
| 1 | SIMPLE | user | NULL | const | PRIMARY | PRIMARY | 351 |
+----+-------------+-------+------------+-------+---------------+---------+---------+

TiDB-v8.5.4> EXPLAIN SELECT user FROM mysql.user WHERE host=’%’ AND user=’root’;
+-------------+---------+------+---------------------------------------+---------------+
| id | estRows | task | access object | operator info |
+-------------+---------+------+---------------------------------------+---------------+
| Point_Get_1 | 1.00 | root | table:user, index:PRIMARY(Host, User) | |
+-------------+---------+------+---------------------------------------+---------------+

Binlog replication compatibility

The Shift: Statement → Row-Based (RBR)

▶ Hard to guarantee same result on replica

The CDC Gap: RBR was built for MySQL, not generic CDC

▶ Missing type metadata (e.g. signedness)

Protocol Drift: New mysql::serialization format

▶ Introduced for GTID tags; custom format, not Protobuf

▶ Minimal documentation → go-mysql friction

TiDB Strategy: Bypasses binlog generation

▶ Outbound: TiCDC Inbound: Data Migration (DM)

Errors, limits, and bugs

Error Codes:

▶ MySQL errors have Code, SQLState, and message

▶ Should messages be identical or only codes?

▶ TiDB uses error codes >8000 to avoid conflicts

Limits: TiDB matches MySQL limits by default (e.g. 64-char
object names).

Bug-for-bug compatibility? MySQL has a bug in FORMAT() for
Bulgarian. Should TiDB replicate bugs to stay compatible?

Thank you!
Questions?

	The Standard: PostgreSQL Compatibility
	The Implementation: MySQL Compatibility

