“Drop-in Replacement”:
Defining Compatibility for
Postgres and MySQL Derivatives

Jimmy Angelakos, Daniél van Eeden

¥ FOSDEM 2026 Database Devroom

Who are we?

vvyvyvVvyvyyvyy

Jimmy Angelakos

Based in Edinburgh, Scotland

Staff Software Engineer, pgEdge

Open Source user & contributor (25+ years)
PostgreSQL Significant Contributor

Author, PostgreSQL Mistakes and How to Avoid Them
pg_statviz PostgreSQL extension

Who are we?

» Daniel van Eeden
» Working for PingCAP on TiDB

» Contributor to MySQL, go-mysql, Wireshark, ...

» Awarded MySQL Rockstar in 2023

The landscape

The success of open source databases like PostgreSQL and
MySQL has created an ecosystem of derivatives claiming
“drop-in compatibility.”
» User confusion and brand dilution as derivatives diverge
from upstream
» Compatibility is not an absolute Yes/No situation

» Even different versions of the same database are not
100% compatible (deprecated & added features)

» What does “PostgreSQL compatible” or “MySQL compatible”
actually mean?

Defining compatibility

From a user perspective:
» Will my application work with this database?
» What database drivers and APIs can | use?
» Can | replicate from and to this database?
» Does a cloud DBaa$S offering provide the same experience?
» Can | use an existing ecosystem of tools and drivers?

Two perspectives

The Standard: PostgreSQL Compatibility

The Implementation: MySQL Compatibility

PGConf.EU 2025 working group

» “Establishing the PostgreSQL Standard: What's Postgres
compatible?” working session at PGConf.EU in Riga, Latvia
(Oct 2025)

» Goal: practical framework of criteria and tests for PostgreSQL
compatibility

» With PostgreSQL becoming “the new Linux" for the
enterprise, this is increasingly important

HOW_ STANDARDS PROLIFERATE:

(462 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

IM?! RIDICULOUS] [SooN:]
WE NEED To DEVELOP
. || ONE UNNVERsAL STANDARD ,
SITUATION: | | T covers Everyone's | | STTUATION:
THERE ARE || USE CASES, THERE ARE

4 COMPETING YERH! 5 COMPETING

STANDPRDS. \5\\) %J STANDPRDS.

Why not just 1ISO SQL?

Why care about “PostgreSQL compatible” instead of simply
ISO/IEC SQL:20237

The SQL standard doesn’t define:
» Implementation details like indexes and on-disk data formats

» Function names for features not yet standardized (vector
search, UUIDv7)

» Administrative commands
» Network protocol

The Riga consensus

Work has pivoted from a binary “Pass/Fail” certification to a
granular compatibility matrix.

» Weighted checklist (Core vs Optional), to avoid
stifling innovation

» “Managed” PG: Specific exceptions for managed
environments (restricted superuser, filesystem access)

» No silent failures: CREATE INDEX must actually
build the index, not just return “success”

Core SQL & feature set

Everything covered by Postgres documentation in
“Part Il: SQL Commands” is required.

» Even rarely-used features must be supported

» Implicit behaviours: Undocumented behaviours users rely on
(e.g. INSERT ... ORDER BY)

» Data types: ARRAY, BYTEA, JSONB required

» Feature dependencies: Triggers imply full PL/pgSQL
language support

Protocol & behavioural compatibility

» Transaction isolation: Standard levels (Read Committed,
Repeatable Read, Serializable) with identical behaviour

» Error codes: ldentical SQLSTATE codes for common errors

» System catalogs: pg_catalog must be present and
predictable for monitoring tools

» Hard limits: Must generally match Postgres limits (e.g.
identifier length, max columns)

Connectivity & tools

» Server version string must satisfy standard tools (e.g. psql)

» Standard drivers (JDBC, Psycopg) must work without
modification

» Ability to pg_dump import/export to/from PostgreSQL

» Execution plans need not be identical, but functional results
must match (e.g. partitions are pruned)

» Standard tools compatibility (Patroni, pg basebackup,
RepMgr)

Replication compatibility

Logical Replication:
» Bi-directional (Product X <> PostgreSQL)
» Observable via standard replication catalogs
» Vendor extensions must not break connection to vanilla
Postgres

Physical Replication:
» Physical copying of binary files (or equivalent)
» Hybrid clusters: mixing vanilla and vendor nodes
» Point-In-Time Recovery (PITR) and WAL access required

The test harness

» Test suite outside the PostgreSQL codebase
» Test suite versions correspond numerically to PG releases
» Vendors provide compatible build target

» Testing feature compliance, not bugs—fixing a Postgres bug
should not cause test failure

The Compatibility Illusion

mysgl> INSERT INTO tl VALUES (1), (2), (3); mysgl> SELECT x FROM generate_series(
Query OK, 3 rows affected (0.00 sec) r2025-02-01" : : TIMESTAMP,
72025-02-02" : : TIMESTAMP,

mysqgl> PRAGMA table_list; ’12 hour'’);

o +———— o o +————+ t——————— +

| schema | name | type | ncol | wr | | generate_series |

e o fom————— o fo———+ o +

| main | tl | table | 1 [0 | | 2025-02-01T00:00:00Z |

Fo—— o Fo———— o -t | 2025-02-01T12:00:00Z |

1 row in set (0.00 sec) | 2025-02-02T00:00:00Z |
| 2025-02-02T12:00:00Z |

mysqgl> SELECT sqglite_version(); ——— +

o + 4 rows in set (0.00 sec)

| sglite_version() |

R + mysqgl> SELECT VERSION () ;

| 3.46.0 | e +

e + | version

1 row in set (0.00 sec) tom e +
| PostgreSQL 17.2 (Debian 17.2-1.. |
e +

1 row in set (0.00 sec)

Compatible, no?

» Is this MySQL compatible? ... well the protocol is.
» Is this PostgreSQL compatible? ... well the syntax is.

» Examples created with go—mysqgl as MySQL protocol proxy
with SQLite and PostgreSQL backends.

» What if a cloud provider did something similar?

TiDB: Architecture

TiDB is:
» A MySQL compatible database
» Not based on or descending from MySQL code like MariaDB

» Written in Go
» Using TiKV (RocksDB) as storage layer, not InnoDB
» Accepts ENGINE=InnoDB but silently ignores it

» A distributed database

TiDB: Feature Compatibility

» Some features like Geospatial and VECTOR are seen as
optional

» XML: TiDB never implemented it—JSON has become more
popular

» Vector: MySQL has the datatype, but search only in Cloud
» TiDB adds useful MariaDB features (e.g. sequences)
» Should compatibility on its own be the target?

MariaDB

» Originally a true drop-in replacement for MySQL
» Stop MySQL, swap binaries, start—no import/export needed
» Over time, MySQL and MariaDB have diverged significantly
» MySQL sgl mode: historically offered compatible syntax
modes for Oracle, PostgreSQL, and others

Wire protocol challenges

MySQL protocol v10 uses capability flags for feature negotiation
(compression, auth methods, etc.).

Architectural friction:

» Clients also use the announced version string for feature
detection

» MySQL Connector/J queries
information_schema.keywords if version > 8.0

» When TiDB changed to 8.0.11-TiDB-v7.5. 3, we had to
implement this table
» TiDB forked MySQL Connector/J to support TiDB-specific
authentication

SQL Syntax & Type Friction

Reserved keywords: Vary significantly between database products
and versions.

EXPLAIN formats: MySQL supports multiple formats; TiDB uses
its own—distributed query plans look fundamentally different.
Type implementation divergence:
» MySQL = JSON type, MariaDB = TEXT + JSON_VALID ()
» MySQL = UUID_TO_BIN (), MariaDB = UUID type

Explain formats

o°

mysgl-8.4.7> EXPLAIN SELECT user FROM mysqgl.user WHERE host=’%’ AND user=’root’;

B E o o —— o o o e et +

| id | select_type | table | partitions | type | possible_keys | key | key_len
o o= o ———— o o ——— o o +

| 1 | SIMPLE | user | NULL | const | PRIMARY | PRIMARY | 351 |
B et o o —— o o ——— o o +
TiDB-v8.5.4> EXPLAIN SELECT user FROM mysqgl.user WHERE host=’%’ AND user=’root’;
o ——— o - B et et o ——
| id | estRows | task | access object | operator info
Fom Fom o B ettt o
| Point_Get_1 | 1.00 | root | table:user, index:PRIMARY (Host, User)

o o +————— o Fo——

Binlog replication compatibility

The Shift: Statement — Row-Based (RBR)
» Hard to guarantee same result on replica

The CDC Gap: RBR was built for MySQL, not generic CDC
» Missing type metadata (e.g. signedness)

Protocol Drift: New mysgl::serialization format
» Introduced for GTID tags; custom format, not Protobuf
» Minimal documentation — go-mysqgl friction

TiDB Strategy: Bypasses binlog generation
» Outbound: TiCDC Inbound: Data Migration (DM)

Errors, limits, and bugs

Error Codes:
» MySQL errors have Code, SQLState, and message
» Should messages be identical or only codes?
» TiDB uses error codes >8000 to avoid conflicts

Limits: TiDB matches MySQL limits by default (e.g. 64-char
object names).

Bug-for-bug compatibility? MySQL has a bug in FORMAT () for
Bulgarian. Should TiDB replicate bugs to stay compatible?

£¥

Thank youl

Questions?

	The Standard: PostgreSQL Compatibility
	The Implementation: MySQL Compatibility

