
Building a minimal cross-platform terminal UI library

’26
Université Libre Bruxelles / 1 February

Thijs Schreijer

Source code:
● https://github.com/lunarmodules/luasystem
● https://github.com/lunarmodules/terminal.lua

https://github.com/lunarmodules/luasystem
https://github.com/lunarmodules/terminal.lua

 2

GSoC 2025

 3

Why another terminal UI library?

● implementing a UI is hard;
● massive APIs,
● multi-threading,
● Etc.

● a simple way to build a useful app, to get started: cross-platform

● as Copas maintainer; non-blocking coroutine behaviour

 4

Demo

● Luarocks
● Luarox
● Luarocket

 5

Goals

● Cross-platform
● Posix / Mac / Windows

● non-blocking input
● mechanisms over policies

● Don’t force event mechanisms and the like

● no external dependencies
● Too hard for Windows users

● minimize platform specifics

 6

non-goals

● mouse support
● overlapping windows (screen buffers etc)

 7

Stack

LuaSystem
(C code, minimal primitives needed)

Windows Mac Nixes

win-specific posix-specific

Terminal.lua
(Lua code, lots of additional abstractions)

Application

 8

The easy/common part

● ANSI sequences for modern terminals
● available in Windows 10 since 2019 (Windows Terminal app)
● no support for `cmd.exe`!

● Getting terminal size (all OS’es have API calls)

 9

Challenges: UTF-8/Unicode

● Non-native for Windows
● Output is easy; ANSI sequences to `stdout`
● Input not

● Multibyte encoding (Lua strings are byte-arrays)
● Single/double/ambiguous display-width

● Display-width API is unavailable on Windows
● Used an opensource implementation by Markus Kuhn; `wcwidth`
● Ambiguous-width still problematic

 10

Challenges: UTF-8/Unicode

● Implemented width checking:
● utf8cwidth(char)
● utf8swidth(string)

● Implemented `string.sub` equivalents:
● utf8sub(str, i, j)
● utf8sub_col(str, i, j[, no_pad=false])

 11

Challenges: UTF-8/Unicode

● EditLine object:
● Holds a string
● Manipulate using a cursor
● Tracks position and sizes both in characters and in display columns

API examples:
 editline:delete_word ([n=1]) Delete until the end of the current word.
 editline:format ([opts]) Format the contents for display, (word)wrap.
 editline:goto_home () Moves the cursor to the start of the string.
 editline:insert (s) Inserts a string at the current cursor position.
 editline:left ([n=1]) Moves the cursor to the left.
 editline:left_word ([n=1]) Moves the cursor to the start of the current word.
 editline:pos_char () Returns the current cursor position (chars).
 editline:pos_col () Returns the current cursor position (columns).
 editline:sub_char ([i=1[, j=-1]]) Returns a new Editline object being a substring.

 12

Challenges: keyboard input

● There is no non-blocking `stdin` reading on Windows

● Fallback to `conio.h` (reading directly from keyboard buffer)

 13

Challenges: keyboard input

Posix Windows

C
 c

od
e

in
 L

ua
S

ys
te

m

 14

Initialization

● Posix
● Disable canonical mode

● Disable echo

● Detach FDs

● Set `stdin` to non-blocking

● Windows
● Set console output codepage to 65001 (UTF8)

● Enable virtual terminal processing (on in- and output)

 15

Challenges: non-blocking

3 functions based on reading individual bytes

 key, err = _readkey() -- internal C method, read single byte

 key, err = readkey(timeout, [sleep_func]) -- read single byte, with timeout

 seq, type = readansi(timeout, [sleep_func]) -- read utf8-char/ANSI sequence

 -- seq = sequence read (string)

 -- type = any of: “char”, “ctrl”, “ansi” (string)

By changing the default `sleep` method any keyboard-code becomes non-blocking

 16

Querying is slow

● Terminal takes time to respond to a query
● Sleeping to wait takes 2 to 15 ms typically, occasionally 100ms
● Track state instead
● Implemented declarative stacks to track:

● Cursor shape
● Cursor visibility
● Scroll-region
● Text attributes (color, brightness, underline, reverse)

 17

Stack example

 t.text.stack.push{ -- Push new attributes

 fg = "red",

 brightness = "bright",

 }

 t.output.print("Hello bright red World!")

 t.text.stack.pop() -- Restore text attributes

 18

API usage

POSIX API Calls
● isatty() - Check if file descriptor is a TTY

● tcgetattr() - Get terminal attributes

● tcsetattr() - Set terminal attributes

● fcntl() - File control operations (F_GETFL,
F_SETFL for O_NONBLOCK)

● ioctl() - I/O control (TIOCGWINSZ for terminal
size)

Windows API Calls
● isatty() - Check if file descriptor is a TTY

● Get/SetConsoleMode() - Get/set console mode
flags

● GetConsoleScreenBufferInfo() - Get
terminal/console dimensions

● Get/SetConsoleCP() - Get/set console input
code page

● Get/SetConsoleOutputCP() - Get/set console
output code page

● _kbhit() - Check if a key was pressed (non-
blocking)

● _getwch() - Read a wide character from input

 19

Concluding

● Result quite powerful with minimalistic primitives, no dependencies
● Uniform keyboard reading

● Ancient `conio.h` …

● Non-blocking

● Display width is painful
● `wcwidth` implementation

● Need string manipulation based on display colums
● EditLine object for higher-level manipulation and formatting

● Stacks to track terminal state (querying is slow)

 20

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

