¥ FOSDEM'26

Université Libre Bruxelles | 1 February

Building a minimal cross-platform terminal Ul library

Thijs Schreijer

Source code:
 https://github.com/lunarmodules/luasystem
* https://github.com/lunarmodules/terminal.lua

https://github.com/lunarmodules/luasystem
https://github.com/lunarmodules/terminal.lua

GSoC 2025

“ Google Summer of Code

Why another terminal Ul library?

* Implementing a Ul is hard,;
* massive APIs,
* multi-threading,
* Etc.

* a simple way to build a useful app, to get started: cross-platform

» as Copas maintainer; non-blocking coroutine behaviour

* Luarocks

* Luarox

* Luarocket

* Cross-platform
* Posix / Mac / Windows

* non-blocking input
* mechanisms over policies
* Don't force event mechanisms and the like

* no external dependencies
* Too hard for Windows users

* minimize platform specifics

non-goals

* mouse support

» overlapping windows (screen buffers etc)

Stack

win-specific posix-specific

The easy/common part

* ANSI sequences for modern terminals
- available in Windows 10 since 2019 (Windows Terminal app)
* no support for cmd.exe!

* Getting terminal size (all OS’es have API calls)

Challenges: UTF-8/Unicode

* Non-native for Windows
- OQOutput is easy; ANSI sequences to stdout’
* Input not

* Multibyte encoding (Lua strings are byte-arrays)

* Single/double/ambiguous display-width
* Display-width API is unavailable on Windows
« Used an opensource implementation by Markus Kuhn; ‘wewidth’

* Ambiguous-width still problematic

Challenges: UTF-8/Unicode

* Implemented width checking:
e utf8cwidth (char)
e utf8swidth(string)

* Implemented string.sub equivalents:
« utf8sub(str, i, j)
 utf8sub col(str, i, j[, no pad=false])

Challenges: UTF-8/Unicode

» EditLine object:
* Holds a string

* Manipulate using a cursor

» Tracks position and sizes both in characters and in display columns

APl examples:

delete_word ([n=1]) Delete until the end of

editline:
editline:
editline:
editline:
editline:
editline:
editline:
editline:
editline:

format ([opts]) Format the contents
goto_home () Moves the cursor to
insert (s) Inserts a string at
left ([n=1]) Moves the cursor to
left word ([n=1]) Moves the cursor to
pos_char () Returns the current

pos_col () Returns the current

for
the
the
the
the

the current word.

display, (word)wrap.

start of the string.
current cursor position.
left.

start of the current word.

cursor position (chars).
cursor position (columns).

sub char ([i=1[, j=-1]]) Returns a new Editline object being a substring.

Challenges: keyboard input

» There is no non-blocking stdin reading on Windows

» Fallback to conio.h (reading directly from keyboard buffer)

Challenges: keyboard input

Posix

read byte from @

Windows

read wchar

if N keyboard scan-code then

drop wchar
else

convert wchar to UTF8

write UTF8 to buffer

(CEGROTCR 6T utf8_buffer

C code in LuaSystem

Initialization

* Posix
¢ Disable canonical mode
* Disable echo
¢ Detach FDs

¢ Set stdin’ to non-blocking

* Windows
¢ Set console output codepage to 65001 (UTF8)

* Enable virtual terminal processing (on in- and output)

Challenges: non-blocking

3 functions based on reading individual bytes

key, err = readkey() -- internal C method, read single byte
key, err = readkey(timeout, [sleep func]) -- read single byte, with timeout
seq, type = readansi (timeout, [sleep func]) -- read utf8-char/ANSI sequence

-- seq = sequence read (string)

-- type = any of: “char”, “ctrl”, “ansi” (string)

By changing the default "s1eep method any keyboard-code becomes non-blocking

IIIH!II'

Querying is slow

* Terminal takes time to respond to a query

» Sleeping to wait takes 2 to 15 ms typically, occasionally 100ms
* Track state instead
* Implemented declarative stacks to track:

* Cursor shape

* Cursor visibility

» Scroll-region

» Text attributes (color, brightness, underline, reverse)

Stack example

t.text.stack.push{ -— Push new attributes
fg = "red",
brightness = "bright",

t.output.print ("Hello bright red World!")

t.text.stack.pop () -—- Restore text attributes

APl usage

POSIX API Calls Windows API Calls
- isatty () - Checkif file descriptorisa TTY * isatty () - Check if file descriptorisa TTY
* tcgetattr () - Getterminal attributes * Get/SetConsoleMode () - Get/set console mode
- tcsetattr () - Setterminal attributes flags

- fentl () - File control operations (F_GETFL, ° GetConsoleScreenBufferInfo() - Get

E SETFL for O NONBLOCK) terminal/console dimensions |
- ioctl() - /O control (TIOCGWINSZ for terminal © Get/SetConsoleCR() - Get/set console input
size) code page

* Get/SetConsoleOutputCP () - Get/set console
output code page

* _kbhit() - Check if a key was pressed (non-
blocking)

* _getwch () - Read a wide character from input

Concluding

* Result quite powerful with minimalistic primitives, no dependencies
* Uniform keyboard reading

 Ancient conio.h ...

* Non-blocking
* Display width is painful

 ‘wewidth implementation

* Need string manipulation based on display colums

* EditLine object for higher-level manipulation and formatting

- Stacks to track terminal state (querying is slow)

Questions?

NOT SURE IF THEY'RE CLAPPING FOR MY
PRESENTATION

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

