
Keeping your applications secure by
evolving OAuth 2.0 and OpenID Connect
Alexander Schwartz | Keycloak Maintainer
FOSDEM (Brussels, BE) | 2026-02-01

The Epic Quest of Single Sign On

Share your identity and delegate resource access
to selected services.

🛂

The Epic Quest of Single Sign On

Share your identity and delegate resource access
to selected services.

Keep your credentials secure.
 Let applications operate on your data when permitted.

🛂
🔑

Evolution of Single Sign On and delegation
SAML 2

.0
(S

SO w
ith

 X
ML)

20
05

Evolution of Single Sign On and delegation
SAML 2

.0
(S

SO w
ith

 X
ML)

OAut
h 1

.0
(to

o c
om

ple
x)

20
05

20
07

OAut
h 2

.0
(d

ele
ga

te
re

so
ur

ce
s)

20
12

20
14

Ope
nID

 C
on

ne
ct

(Id
en

tity
)

Evolution of Single Sign On and delegation
SAML 2

.0
(S

SO w
ith

 X
ML)

OAut
h 1

.0
(to

o c
om

ple
x)

20
05

20
07

OAut
h 2

.0
(d

ele
ga

te
re

so
ur

ce
s)

20
12

20
14

Ope
nID

 C
on

ne
ct

(Id
en

tity
)

20
21

FA
PI 1

.0
(O

pe
n B

an
kin

g)

20
25

Bes
t C

ur
re

nt
 P

ra
cti

ce
 fo

r O
Aut

h 2
.0

20
25

FA
PI 2

.0
(fin

an
ce

, e
-h

ea
lth

, …
)

OAut
h 2

.1
(th

e s
ec

ur
e p

ar
ts)

20
26

?

Attacker personas: what is assumed to be secure, and what can be compromised.

Assumed to work and not compromised/out of scope:

🔒 Transport layer security (TLS)

🔑 Sharing public keys (JWKS)

💻 Browsers and Endpoints

🪪 Identities and session management

Security Assumptions FAPI 2.0

https://openid.net/specs/fapi-attacker-model-2_0-final.html

https://openid.net/specs/fapi-attacker-model-2_0-final.html

A1: Web attacker: Calls URLs on its own, makes users
 click links, but can’t break encryption.

A2: Spying on the network, but can’t break encryption.

A3a:Read authorization requests in the browser.

A5: Read proxy/resource owner request logs, but can’t
read responses.

…

Attacker Models FAPI 2.0

https://openid.net/specs/fapi-attacker-model-2_0-final.html

😈
��

Resource

Proxy

Browser

IdP

https://openid.net/specs/fapi-attacker-model-2_0-final.html

🔒

● TLS 1.2+
● TLS certificate checks
● DNSSEC
● Secure TLS ciphers
● HSTS to avoid downgrading
● …

TL;DR: Apply best practices to avoid breaking the
out-of-scope assumptions earlier.

Secure your transport layer

https://openid.net/specs/fapi-security-profile-2_0-final.html

Clients &
Browsers

Server

TLS

https://openid.net/specs/fapi-security-profile-2_0-final.html

Simplified OAuth 2.0 Authorization Code Flow

GET authorization_endpoint + ?redirect_uri=...&prompt=login..."

GET redirect_uri "?...session_state=...code=..."

POST code and other parameters to token_endpoint

response with ID token, access token, refresh token, ...

Refreshing tokens and calling APIs

POST refresh_token to token endpoint

response with ID token, access token, refresh token, ...

Call API endpoint with access token as “Authorization: Bearer ..." header

Receiving API response

● TLS on all endpoints
● No resource owner password grant
● No wildcards in redirect URIs
● Private Key JWT Client Authentication (= no public clients)

● Pushed Authorization Requests (PAR)
● PKCE with S256
● Sender Constrained Tokens (mTLS or DPoP)

Use OAuth best practices

https://openid.net/specs/fapi-security-profile-2_0-final.html

Clients &
Browsers

Server

TLS🔒

https://openid.net/specs/fapi-security-profile-2_0-final.html

Use PAR for confidential auth flow parameters

Use Pushed Authorization Requests to prevent passing information via the URL to the
browser. This ensures confidentiality and integrity. Works only for confidential clients.

1. Send Information to IdP authenticated with client credentials and receive an ID
2. Forward it to the browser

Client IdP

Browser
2

1

Use PKCE to secure Authorization Code

Client IdP

Use Proof Key for Code Exchange to prevent others using the authorization code.

1. Send a code challenge at the start of the authorization code flow
2. Forward challenge to the IdP by the browser
3. Send a code verifier when requesting code-to-token exchange

Browser
21

3

Use Demonstrating Proof-of-Possession (DPoP) with an ephemeral client key pair
to secure all steps.

1. Create an ephemeral key pair (for SPAs use the WebCrypto API)
2. Use the authorization code flow with PKCE or DPoP to prevent spoofing
3. Use the DPoP key pair for the code-to-token flow to bind the access token

(all clients) and refresh token (public clients) to
the keypair to prevent misuse of stolen tokens

4. Use DPoP for all future token refreshes
5. Optional: Use DPoP for APIs

(with “Authorization: DPoP …”)

Sender Constrained Tokens: DPoP

Client

APIs

IdP

5

2,3,4
https://www.keycloak.org/nightly/securing-apps/dpop

https://www.keycloak.org/nightly/securing-apps/dpop

HTTP method, URI, DPoP proof, access token and optional nonce need to align!

Sender Constrained Tokens: DPoP

GET /protected-resource HTTP/1.1
Authorization: DPoP <Access-Token>
DPoP: <DPoP-Proof> HTTP/1.1 400 Bad Request

DPoP-Nonce: <Nonce>

{
 "error": "use_dpop_nonce",
 ...
}GET /protected-resource HTTP/1.1

Authorization: DPoP <Access-Token>
DPoP: <DPoP-Proof-with-Nonce>

HTTP/1.1 200 OK

...

Sender Constrained Tokens: mTLS

Bind all issued tokens to the the TLS client certificate.

1. Client connects to the IdP to acquire tokens. Tokens contain a hash of the
client’s certificate

2. All consumers of the access tokens can validate the hash as it is stored as a
claim in the token.

Challenges:

● Only works for confidential clients
● Connecting to the IdP with mTLS
● All APIs that the client calls need to support mTLS

Keycloak is an Open Source
Identity und Access Management System

🎂 First Commit 2013-07-02

🏆 Cloud Native Computing Foundation
 Incubating project since April 2023

📜 Apache License, Version 2.0

⭐ 33k GitHub stars

Keycloak supports several standards

OpenID Connect, OAuth, SAML, …

Including:

● FAPI 2.0 Security Profile
● The OAuth 2.1 Authorization Framework (Draft)

Demo: Let’s enforce the FAPI 2.0 Security Profile

https://www.keycloak.org/securing-apps/specifications

https://www.keycloak.org/securing-apps/specifications

Keycloak Client Profiles

Keycloak Adding a client policy

Validation of the policy in all actions

Policy is checked on client update, login, token issuing. See an example for client
update below where a wildcard redirect URI is not allowed.

Client-specific configurations

Some settings are also available
on a per-client level.

● No wildcard redirect URLs or URL fragments.
● No localhost and loopback addresses.
● Must use PKCE.
● No implicit grant.
● No Resource Owner Password Grant.
● No Bearer token in query parameters.
● …

➡ Moving target as it is not released yet, but very much aligned with FAPI 2.0 and “Best
Current Practice for OAuth 2.0 Security” (RFC 9700)

OAuth 2.1 (draft) vs. OAuth 2.0

1
2

3

Tools to help you

● mod_auth_openidc / OAuth 2 and OpenID Connect for Apache 2.x httpd server
Supports FAPI 2.x (including DPoP)
https://github.com/OpenIDC/mod_auth_openidc

● openid-client / OAuth 2 and OpenID Connect Client API for JavaScript Runtimes
https://github.com/panva/openid-client
Certified for FAPI 2.0 (including DPoP)

● Nimbus OAuth SDK / Framework-agnostic OAuth 2 and OpenID Connect for Java
https://connect2id.com/products/nimbus-oauth-openid-connect-sdk

https://github.com/OpenIDC/mod_auth_openidc
https://github.com/panva/openid-client
https://connect2id.com/products/nimbus-oauth-openid-connect-sdk

How to evolve OAuth security in your setup

1. Pick one security feature to enforce and educate developers (for example PKCE)
2. Wait for developers to complete their tests.
3. Update clients configurations in the IdP one-by-one.
4. Repeat for other features (like implicit grant, DPoP, etc.).

Security is a journey!🥱

Brownouts to speed up the process

“deliberate introduction of temporary outages to a system, API or feature that is being
phased out.”

1. Explain a set of best practices to your engineers and how to test them in staging.
2. Let IdP enforce best practices Monday between 9 and 10.
3. Set a deadline to enforce them permanently.
4. Repeat with the next set. Security with a whip!😡

https://en.wikipedia.org/wiki/Brownout_(software_engineering)

https://en.wikipedia.org/wiki/Brownout_(software_engineering)

Keeping applications secure

🍄Level up clients, IdPs and and APIs.

🛂Enforce policies to keep your organization aligned.

🫶Share your successes and lessons learned with the community.

Case Studies

https://www.keycloak.org/case-studies

Hitachi Ltd. used Keycloak to make
financial grade security easier

OpenTalk achieves versatile and compliant
user authentication with Keycloak

BRZ migrated the Austrian Business
Service Portal with 2M+ users to Keycloak

https://www.keycloak.org/case-studies

● Keycloak
https://www.keycloak.org/

● Case Studies
https://www.keycloak.org/case-studies

● KeycloakCon @ KubeCon EU
https://events.linuxfoundation.org/kubecon-cloudnativecon-europe/

● Using DPoP to use access tokens securely in your Single Page Applications
@ FOSDEM 2025
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5370-using-dpop-to-u
se-access-tokens-securely-in-your-single-page-applications/

Links
Slides:

https://www.keycloak.org/
https://www.keycloak.org/case-studies
https://events.linuxfoundation.org/kubecon-cloudnativecon-europe/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5370-using-dpop-to-use-access-tokens-securely-in-your-single-page-applications/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5370-using-dpop-to-use-access-tokens-securely-in-your-single-page-applications/

Alexander Schwartz
Keycloak Maintainer

alexander.schwartz@gmx.net
https://www.ahus1.de

 @ahus1.de

 @ahus1@fosstodon.org

Kontakt

