COIKEYE L\

eeping your applications secure by
volving OAuth 2.0 and OpenlD Connect

xander Schwartz | Keycloak Maintainer
) (Q'IQ\USSGIS, BE) | 2026-02-01

The Epic Quest of Single Sign On

E, W Share your identity and delegate resource access

"41 to selected services.

MIAKEYCLO

The Epic Quest of Single Sign On

E, W Share your identity and delegate resource access

"!‘ to selected services.

Keep your credentials secure.
Let applications operate on your data when permitted.

MIAKEYCLO

Evolution of Single Sign On and delegation

Evolution of Single Sign On and delegation

.LOAK

Evolution of Single Sign On and delegation

CLOAK

Security Assumptions FAPI 2.0

Attacker personas: what is assumed to be secure, and what can be compromised.

Assumed to work and not compromised/out of scope:
(a) :

w Transport layer security (TLS)

4~ Sharing public keys (JWKS)

B Browsers and Endpoints

2= |dentities and session management

c ({CLOAK https://openid.net/specs/fapi-attacker-model-2_0-final.html

https://openid.net/specs/fapi-attacker-model-2_0-final.html

Attacker Models FAPI 2.0

A1: Web attacker: Calls URLs on its own, makes users Browser
click links, but can’t break encryption.

A2: Spying on the network, but can’t break encryption. ' i

A3a:Read authorization requests in the browser. Proxy

A5: Read proxy/resource owner request logs, but can’t /\

read responses. Resource IdP

/CLOAK https://openid.net/specs/fapi-attacker-model-2_0-final.html

https://openid.net/specs/fapi-attacker-model-2_0-final.html

Secure your transport layer

o TLS 1.2+

e TLS certificate checks Clients &

e DNSSEC Browsers

e Secure TLS ciphers

e HSTS to avoid downgrading : l LS
(

TL;DR: Apply best practices to avoid breaking the
out-of-scope assumptions earlier.

Server

/CLOAK https://openid.net/specs/fapi-security-profile-2_0-final.html

https://openid.net/specs/fapi-security-profile-2_0-final.html

Simplified OAuth 2.0 Authorization Code Flow

GET authorization endpoint + ?redirect uri=...&prompt=login..."

GET redirect uri "?...session_state=...code=...

POST code and other parameters to token endpoint

response with ID token, access token, refresh token, ... I

({CLOAK

Refreshing tokens and calling APlIs

POST refresh token to token endpoint |
response with ID token, access token, refresh token, ... |

Call API endpoint with access token as “Authorization: Bearer ..." header

Receiving API response

({CLOAK

Use OAuth best practices

e TLS on all endpoints
e No resource owner password grant Clients &
e No wildcards in redirect URIs Browsers
e Private Key JWT Client Authentication (= no public clients)
() l TLS
Pushed Authorization Requests (PAR)

e PKCE with S256
Sender Constrained Tokens (mTLS or DPoP) Server

/CLOAK https://openid.net/specs/fapi-security-profile-2_0-final.html

https://openid.net/specs/fapi-security-profile-2_0-final.html

Use PAR for confidential auth flow parameters

Use Pushed Authorization Requests to prevent passing information via the URL to the
browser. This ensures confidentiality and integrity. Works only for confidential clients.

1. Send Information to IdP authenticated with client credentials and receive an ID
2. Forward it to the browser

Browser

Client > IdP

(CLOAK

Use PKCE to secure Authorization Code

Use Proof Key for Code Exchange to prevent others using the authorization code.

1. Send a code challenge at the start of the authorization code flow
2. Forward challenge to the IdP by the browser
3. Send a code verifier when requesting code-to-token exchange

Browser

Client - IdP

(CLOAK

Sender Constrained Tokens: DPoP

Use Demonstrating Proof-of-Possession (DPoP) with an ephemeral client key pair
to secure all steps.

1. Create an ephemeral key pair (for SPAs use the WebCrypto API)

2. Use the authorization code flow with PKCE or DPoP to prevent spoofing

3. Use the DPoP key pair for the code-to-token flow to bind the access token
(all clients) and refresh token (public clients) to

the keypair to prevent misuse of stolen tokens APIs
4. Use DPoP for all future token refreshes 5
5. Optional: Use DPoP for APIs
(with “Authorization: DPoP ...")
Client - IdP
2,3,4

c {CLOAK https://www.keycloak.org/nightly/securing-apps/dpop

https://www.keycloak.org/nightly/securing-apps/dpop

Sender Constrained Tokens: DPoP

HTTP method, URI, DPoP proof, access token and optional nonce need to align!

GET /protected-resource HTTP/1.1

DPoP: <DPoP-Proof>

Authorization: DPoP <Access-Token>

GET /protected-resource HTTP/1l.1

DPoP: <DPoP-Proof-with-Nonce>

Authorization: DPoP <Access-Token>

HTTP/1.1 400 Bad Request
DPoP-Nonce: <Nonce>

"error": "use_ dpop nonce",

HTTP/1.1 200 OK

Sender Constrained Tokens: mTLS

Bind all issued tokens to the the TLS client certificate.

1. Client connects to the IdP to acquire tokens. Tokens contain a hash of the
client’s certificate
2. All consumers of the access tokens can validate the hash as it is stored as a

claim in the token.
Challenges:

e Only works for confidential clients
e Connecting to the IdP with mTLS
All APIs that the client calls need to support mTLS

O <EYcLOAK

Keycloak is an Open Source
Identity und Access Management System

& First Commit 2013-07-02

W Cloud Native Computing Foundation
Incubating project since April 2023

B Apache License, Version 2.0
W 33k GitHub stars

(®AKEYCLO/

Keycloak supports several standards

OpeniD Connect, OAuth, SAML, ...
Including:

e FAPI 2.0 Security Profile
e The OAuth 2.1 Authorization Framework (Draft)

Demo: Let’s enforce the FAPI 2.0 Security Profile

https:// .kevycloak.org/securing-apps/specifications
CLOAK ps://www.key: o] uring-apps/sp

https://www.keycloak.org/securing-apps/specifications

Keycloak Client Profiles

Realm settings > Client policies

Test o Enabled Action

Realm settings are settings that control the options for users, applications, roles, and groups in the current realm. Learn more [£

General Login Email Themes Keys Events Localization Security defenses Sessions Tokens Client polici >

Profiles Policies

Configure via: ® Form view O JSON editor

Q fapi—2| X > Create client profile Refresh 1-4 «~

Name Description
fapi-2-security-profile Global Client profile, which enforce clients to conform 'FAPI 2.0 Security Profile Final' specification.
fapi-2-message-signing = Global Client profile, which enforce clients to conform 'FAPI 2.0 Message Signing Final' specification.

fapi-2-dpop-security-profile . Global Client profile, which enforce clients to conform 'FAPI 2.0 Security Profile Final' using DPoP specification.

Keycloak Adding a client policy

Realm settings 2 Client policies ? Policy details

My secure clients @ cnabled Action v
Name * My secure clients
Description Apply FAPI 2.0 security profile to all clients that have a client-role "secure”.
Save Reload
Conditions @ © Add condition

client-roles @ W

Client profiles @ © Add client profile

fapi-2-security-profile @ W

Validation of the policy in all actions

Policy is checked on client update, login, token issuing. See an example for client
update below where a wildcard redirect URI is not allowed.

CLOAK

o Client could not be updated: invalid_client_metadata

Invalid redirectUris

Always display in Ul (3 o Off

General settings
Access settings

Access settings

Root URL (3 https://localhost:8080/
Capability config
Home URL (® https://localhost:8080/ /
[Login settings
Valid redirect URIs () | https://localhost:8080/* ()
© Add valid redirect URIs Logout settings

Client-specific configurations

Some settings are also available
on a per-client level.

({CLOAK

Clients » Client details

Test OpenID Connect

Clients are applications and services that can request authentication of a user.
Settings Roles Client scopes Sessions Advanced Events

General settings

ClientID * ®

Require PKCE (®

© o

PKCE Method (3 S256 «w

Require DPoP bound o Off
tokens (3

OAuth 2.1 (draft) vs. OAuth 2.0

No wildcard redirect URLs or URL fragments.

No localhost and loopback addresses.

Must use PKCE.

No implicit grant. 1

No Resource Owner Password Grant. 2

No Bearer token in query parameters. 3

=4 Moving target as it is not released yet, but very much aligned with FAPI 2.0 and “Best
Current Practice for OAuth 2.0 Security” (RFC 9700)

O <EYcLOAK

Tools to help you

e mod_auth_openidc / OAuth 2 and OpenID Connect for Apache 2.x httpd server
Supports FAPI 2.x (including DPoP)
https://github.com/OpenIDC/mod_auth_openidc

e openid-client / OAuth 2 and OpenlD Connect Client API for JavaScript Runtimes
https://qgithub.com/panva/openid-client
Certified for FAPI 2.0 (including DPoP)

e Nimbus OAuth SDK / Framework-agnostic OAuth 2 and OpenlD Connect for Java
https://connect2id.com/products/nimbus-oauth-openid-connect-sdk

{CLOAK

https://github.com/OpenIDC/mod_auth_openidc
https://github.com/panva/openid-client
https://connect2id.com/products/nimbus-oauth-openid-connect-sdk

How to evolve OAuth security in your setup

Pick one security feature to enforce and educate developers (for example PKCE)
Wait for developers to complete their tests.

Update clients configurations in the IdP one-by-one.

Repeat for other features (like implicit grant, DPoP, etc.).

b=

{CLOAK

Brownouts to speed up the process

“deliberate introduction of temporary outages to a system, API or feature that is being
phased out.”

Explain a set of best practices to your engineers and how to test them in staging.
Let IdP enforce best practices Monday between 9 and 10.

Set a deadline to enforce them permanently.
Repeat with the next set.

oo~

CLOAK https://en.wikipedia.org/wiki/Brownout (software engineering)

https://en.wikipedia.org/wiki/Brownout_(software_engineering)

Keeping applications secure

O

= Level up clients, IdPs and and APls.

Ly
4] Enforce policies to keep your organization aligned.

==X Share your successes and lessons learned with the community.

({CLOAK

(o3

Case Studies

HITACHI

https://www.keycloak.org/case-studies

LOAK

Hitachi Ltd. used Keycloak to make
financial grade security easier

OpenTalk achieves versatile and compliant
user authentication with Keycloak

BRZ migrated the Austrian Business
Service Portal with 2M+ users to Keycloak

https://www.keycloak.org/case-studies

Links

Slides:

e Keycloak
https://www.kevcloak.org/

e Case Studies
https.//www.keycloak.org/case-studies

e KeycloakCon @ KubeCon EU
https://events.linuxfoundation.org/kubecon-cloudnativecon-europe/

e Using DPoP to use access tokens securely in your Single Page Applications
@ FOSDEM 2025
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5370-using-dpop-to-u
se-access-tokens-securely-in-your-single-page-applications/

O <EYcLOAK

https://www.keycloak.org/
https://www.keycloak.org/case-studies
https://events.linuxfoundation.org/kubecon-cloudnativecon-europe/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5370-using-dpop-to-use-access-tokens-securely-in-your-single-page-applications/
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5370-using-dpop-to-use-access-tokens-securely-in-your-single-page-applications/

Alexander Schwartz
Keycloak Maintainer

alexander.schwartz@gmx.net
https://www.ahusl.de

“@ahustde

@ @ahusl@fosstodon.org

IAKEYCLOAK

